首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Measurements of physical and acoustic properties within the top 40 cm of sediment indicate that there are three classes of parameter variability relevant to acoustic bottom scattering at the Marquesas Keys and Dry Tortugas sites. The three classes of variability, spatially and temporally different in terms of scale, are generated by biological and physical processes acting on sediments. Interplay of bioturbation, trawling and storm events create fine laminations of sand–silt–clay and high gravel-size mollusk shell content at the Marquesas Keys site; the predominance of biological processes creates strong surficial gradients and lateral variability in sediment properties at the Dry Tortugas site.  相似文献   

2.
 This special issue of Geo-Marine Letters, “Benthic Boundary Layer Processes in the Lower Florida Keys,” includes 12 papers that present preliminary results from the Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical processes. Major activities included remote sediment classification; high-frequency acoustic scattering experiments; sediment sampling for radiological, geotechnical, biological, biogeochemical, physical, and geoacoustic studies; and hydrodynamic studies using an instrumented tetrapod. All these data are being used to improve our understanding of the effects of environmental processes on sediment structure and behavior.  相似文献   

3.
 Near-surface sediment geoacoustic and physical properties were measured from a variety of unconsolidated carbonate sediments in the Lower Florida Keys. Surficial values of compressional and shear speed correlate with sediment physical properties and near-surface acoustic reflectivity. Highest speeds (shear 125–150 m s-1; compressional 1670–1725 m s-1) are from sandy sediments near Rebecca Shoal and lowest speeds (shear 40–65 m s-1; compressional 1520–1570 m s-1) are found in soft, silty sediments which collect in sediment ponds in the Southeast Channel of the Dry Tortugas. High compressional wave attenuation is attributed to scattering of acoustic waves from heterogeneity caused by accumulation of abundant shell material and other impedance discontinuities rather than high intrinsic attenuation. Compared to siliciclastic sediments, carbonate sediment shear wave speed is high for comparable values of sediment physical properties. Sediment fabric, rather than changes due to the effects of biogeochemical processes, is responsible for these differences.  相似文献   

4.
 Shallow marine carbonate sediments near the Dry Tortugas undergo extensive biogeochemical diagenesis upon deposition, resulting in postdepositional fabric comprised of micritic aggregates of clay-sized particles, a matrix of peloidal mud, and intraparticular cementation. Freshly deposited primary skeletons, mostly Halimeda fragments, yield micritic aggregates of clay-sized particles, which then form peloidal mud fabric upon compaction. The cryptocrystalline particles produced by micritization are later replaced by high magnesian calcite. Cementation is observed in the intra-particular microenvironment. However, no inter-particular, grain-binding cement was detected throughout the gravity core samples investigated.  相似文献   

5.
 Functional group analysis was used to determine the major bioturbators in the Dry Tortugas, Florida Keys. The surface community is dominated by surface deposit feeding polychaetes and burrowing bivalves capable of mixing the top 0–4 cm of the sediment on time scales of days to weeks. Bioturbation by the Notomastus sp. and Callianassa sp. deep community effectively removes primary sedimentary structures. Their fossilized burrow structures may be geologically important in this system. Surface microtopography is controlled by stabilizing and destabilizing forces that determine the potential for surface resuspension and sediment transport in the Dry Tortugas.  相似文献   

6.
 An instrumented tetrapod was deployed for three weeks on the Dry Tortugas Bank at a depth of 26 m in February 1995. Bottom roughness was dominated by shrimp burrows and worm mounds with rms roughness amplitudes ranging from 0.47 to 1.75 cm. Logarithmic velocity profiles show apparent total roughness heights ranging from 0.30 to 1.45 cm, values consistent with observed biological roughness. The bed sediments were weakly bound by an algal crust at the sediment–water interface. When this bound layer was scraped away by a mooring that was accidentally dragged, sharp-crested wave-induced ripples appeared within the resulting swath. We conclude that physically induced roughness is biologically suppressed, but if dominant, would be significantly higher than the prevailing biological roughness.  相似文献   

7.
 Between 2 and 6 February, 1995, a 25 km2 area at the Dry Tortugas (Florida Keys) was surveyed with a 100 kHz side-scan sonar system and 3.5-kHz subbottom profiler. The side-scan system revealed a pattern of alternating high and low backscatter. The subbottom profiler showed areas with no acoustic penetration between sediment troughs. The combination of both methods allowed delineation of the boundaries in high-backscatter regions, and sediment samples allowed correlations between high backscatter and coarser-grained sediments.  相似文献   

8.
 Sedimentological studies were undertaken in the Dry Tortugas to examine environmental influences on the formation of sedimentary fabric. 234Th, 210Pb, grain size, porosity, and fabric analyses reveal the presence of a soft, fine-grained, well mixed surface layer underlain by compact, shelly, intensely bioturbated carbonate muds. Vertical zonation of biogenic structures indicates that deep bioturbation is advective and results in transport of fine material to the seabed surface. The impact of physical oceanographic processes appears to be restricted to the surface layer; however, potential for preservation of this layer in the sediment record is low due to intense mixing in deeper sediments. Thus, preserved sediments retain an incomplete record of the dominant benthic processes at the study area.  相似文献   

9.
A seabed 2-m-long cone penetrometer and coring system (Geotechnical Module) has been used at 17 stations in four transects on the Scotian Slope to characterise in situ shear strength and induced pore pressure on several different types of late Pleistocene and early Holocene failure. Study sites were selected using the SAR high-resolution deep-towed acoustic system equipped with a digital 160–190 kHz sidescan sonar and a 3.5 kHz subbottom profiler.

Several distinctive types of “geotechnical signature” were recognised from plots of cone resistance and induced pore pressure with depth in the sediment. Normally consolidated sediments show a progressive increase in cone resistance with depth (to about 75 kPa at 2 m subbottom). Holocene surficial muds show spectacular apparent overconsolidation, reaching a peak of 250 kPa at about 50 cm subbottom and then decreasing down to 1.5 m. This overconsolidation is associated with Zoophycos burrows. Late Pleistocene sediments exhumed by bedding plane slides show strong true overconsolidation consistent with the original depth of burial inferred from high-resolution seismic stratigraphy. Debris flows show only a slight shear stress gradient with depth (40–45 kPa over 0.5–1 m subbottom) with under-consolidation due to remoulding of sediment.  相似文献   


10.
To study the relationship between nano-MgO and soil shear property, the nano-MgO was evenly mixed in the soil to perform the triaxial consolidation draining shear test. Then the microscopic soil granules on the shear planes were observed through the scanning electron microscope. The soil water content was 10% and soil dry density was 1.5?g/cm3, different dosages of nano-MgO, i.e., 0, 2, 4, and 6% were put into the soil samples. The result of triaxial consolidation draining shear test showed that, under low confining pressure and more nano-MgO dosage, the stress–strain relationship of nano-MgO-modified soil turned from hardening to softening. The incorporation of nano-MgO can effectively improve the soil failure strength and cohesive force, and the increasing dosages of nano-MgO had a positive effect on soil shear strength and cohesive force, but little effect on internal friction angle. The analysis of scanning electron microscopy showed that the dosage of nano-MgO can reduce the void ratio of soil and reinforce the cementation between soil granules to change the shear property of soil.  相似文献   

11.
Abstract

As a part of the environmental impact assessment studies, geotechnical properties of sediments were determined in the Central Indian Basin. The undrained shear strength and index properties of the siliceous sediments were determined on 20 box cores of uniform dimension collected from various locations in five preselected sites. The maximum core length encountered was 41 cm and most of the sediments were siliceous oozes consisting of radiolarian or diatomaceous tests. The shear strength measurements revealed that surface sediments deposited in recent times (0–10 cm) have a shear strength of 0–1 kPa; this value increases with depth, reaching 10 kPa at 40 cm deep. Older sediments have greater strength because of compaction. Water content varies in the wide range of 312–577% and decreases with depth. The clay minerals such as smectite and illite are dominant and show some control over water content. Wet density, specific gravity, and porosity do not indicate any notable variation with depth, thereby indicating a uniform, slow rate of sedimentation. The average porosity of sediments is 90.2%, specific gravity 2.18, and wet bulk density 1.12 g/cm3. Sediments exhibit medium to high plasticity characteristics, with the average plasticity index varying between 105% and 136%. Preliminary studies on postdisturbance samples showed an increase in natural water content and a decrease in undrained shear strength of sediments in the top 10- to 15-cm layer.  相似文献   

12.
Based on the in-situ measurements,the impact of the marine hydrodynamics,such as wave and tide,in the rapidly deposited sediments consolidation process was studied.In the tide flat of Diaokou delta-lobe,one test pit was excavated.The seabed soils were dug and dehydrated,and then the powder of the soil was mixed with seawater to be fluid sediments.And an iron plate covered part of the test pit to cut off the effect of the marine hydrodynamics.By field-testing methods,like static cone penetration test (SPT) and vane shear test (VST),the variation of strength is measured as a function of time,and the marine hydrodynamics impact on the consolidation process of the sediments in the Yellow River estuary was studied.It is shown that the self-consolidated sediments’ strength linearly increases with the depth.In the consolidation process,in the initial,marine hydrodynamics play a decisive role,about 1.5 times as much as self-consolidated in raising the strength of the sea-bed soils,and with the extension of the depth the role of the hydrodynamics is reduced.In the continuation of the consolidation process,the trend of the surface sediments increased-strength gradually slows down under the water dynamics,while the sediments below are in opposite ways.As a result,the rapidly deposited silt presents a nonuniform consolidation state,and the crust gradually forms.The results have been referenced in studying the role of the hydrodynamics in the soil consolidation process.  相似文献   

13.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

14.
As a part of the environmental impact assessment studies, geotechnical properties of sediments were determined in the Central Indian Basin. The undrained shear strength and index properties of the siliceous sediments were determined on 20 box cores of uniform dimension collected from various locations in five preselected sites. The maximum core length encountered was 41 cm and most of the sediments were siliceous oozes consisting of radiolarian or diatomaceous tests. The shear strength measurements revealed that surface sediments deposited in recent times (0-10 cm) have a shear strength of 0-1 kPa; this value increases with depth, reaching 10 kPa at 40 cm deep. Older sediments have greater strength because of compaction. Water content varies in the wide range of 312-577% and decreases with depth. The clay minerals such as smectite and illite are dominant and show some control over water content. Wet density, specific gravity, and porosity do not indicate any notable variation with depth, thereby indicating a uniform, slow rate of sedimentation. The average porosity of sediments is 90.2%, specific gravity 2.18, and wet bulk density 1.12 g/cm 3 . Sediments exhibit medium to high plasticity characteristics, with the average plasticity index varying between 105% and 136%. Preliminary studies on postdisturbance samples showed an increase in natural water content and a decrease in undrained shear strength of sediments in the top 10- to 15-cm layer.  相似文献   

15.
 Spatial variability of shallow-water carbonate sediments near Dry Tortugas, Florida, is scale-dependent. Wet bulk density, grain density, porosity, compressional wave velocity, and grain size variability generally increase down to 2.4 m vertically and 850 m laterally. Grain size is most variable, followed by porosity, wet bulk density, compressional wave velocity, and grain density bothvertically and laterally, consistent with Walther’s Law. Variability was empirically modeled by linear regression analysis to predict variability based on scale, characterize sediment property variability, and quantify sedimentisotropy.  相似文献   

16.
We studied diatom assemblages and CaCO3 contents of methane-derived authigenic carbonates from the eastern margin of the Sea of Japan and assessed the formation time of these samples. Radioactive 14C date was determined in selected samples to obtain the maximum age of the time. The results of our study suggest mass formation of carbonate nodules in a glacial period within ∼40 ky, consistent with a published U/Th dating result of carbonate nodules in the study area. Diatom assemblages and contents in the carbonate nodules (abundance of ∼106/g, dominance of neritic-littoral species, warm/cold water species ratio lower than ∼25) differ from the near-seafloor sediments in the study area, which have characteristics of Holocene sediments in the Sea of Japan, and suggest cementation of glacial sediments. Laminated sediments in some nodule samples are glacial sediments because laminations are records of a low sea level period in the semi-enclosed ocean. Similarity of diatom assemblages and contents in all carbonate samples is another evidence of glacial sediments in nodules. Glacial sediments with oceanic cold water species as low as Holocene sediments restricts the sediment age to before 20 cal. ky BP. Carbonate contents higher than 78 wt% suggest the cementation of poorly compacted sediments near the seafloor, and the date of carbonate cementation is, therefore, close to that of the cemented sediments. Most carbonate nodule samples in this study were formed in a glacial period and detection of 14C restricts this period to within ∼40 ky.  相似文献   

17.
选用近海分布广泛的粉土为研究对象,利用动三轴压缩试验结果得到了动荷载作用下粉土的应力-应变关系、孔压发展模式及动强度与临界循环次数之间的关系;探讨固结围压和固结比对粉土动力学性质的影响。动力学试验结果表明,动剪切模量随着固结围压的增大而增大,动阻尼比随动剪应变幅的变化关系受围压影响不大;不同围压对动剪应力的比值影响很小,同一围压下随着固结比的增大,动剪应力比也会随之增大;不同围压及不同固结比对以Nf表示的峰值孔隙水压力发展模式影响很小。  相似文献   

18.
This study was undertaken to investigate the implication of geoacoustic behaviors in the shallow marine sediments associated with the changes in geotechnical index properties. Two piston cores (270 cm and 400 cm in core length) used in this study were recovered from stations 1 and 2, the western continental margin, the East Sea. Scanning electron microscopy (SEM) was employed to illustrate the effects of microstructure on shear properties. The direct SEM observation of sediment fabrics is inevitable to understand the correlation of the changes in geoacoustic properties to the sediment structure. The consolidation of sediments by overburden stress resulting in the clay fabric alteration appears to play an important role in changing shear properties. Water contents and porosity of sediments gradually decreases with increasing depth, whereas wet bulk density shows a reverse trend. It is interesting to note that shear wave velocities increase rapidly from 8 to 20 m/s while compressional wave velocities significantly fluctuate, ranging from 1450 to 1550 m/s with depth. The fabric changes in sediment with increasing depth for example, uniform grain size and well oriented clay fabrics may cause the shear strength increase from 1 to 12 kPa. Shear wave velocity is, therefore, shown to be very sensitive to the changes in undrained strength for unconsolidated marine sediments. This correlation allows an in-situ estimation of shear stress in the subsurface from shear wave velocity data.  相似文献   

19.
 Real-time trackline plots of surficial sediment acoustic impedance delineate several sedimentary facies off Garden Key in the Dry Tortugas. The sea floor within a 6×6 km surveyed area consists of carbonate muds (silts), sands and shell, rock, and live corals. The 4-kHz acoustic data supports this finding by providing a pictographic representation of the distribution and structure of several sediment facies types. Plotting the gridded acoustic data with commercial mapping software (Surfer) provides a three-dimensional (3D) perspective of the bottom topography with a color contour map of surficial sediment impedance (upper 0.4 m) draped over the 3D surface.  相似文献   

20.
Abstract

This paper presents the results of a laboratory investigation undertaken to study the nature of two submarine carbonate soils from Bombay High off the west coast of India, as well as to study the shear and plasticity behavior of their sand and silt‐clay fractions, respectively. Scanning electron micrographs reveal that the carbonate content in both soils is comprised primarily of nonskeletal particles of various types. X‐ray diffraction and infrared absorption analyses indicate that in one soil the carbonate fraction consists of calcite and aragonite minerals, whereas in the other soil dolomite is also present. The non‐carbonate fraction of both soils is comprised primarily of quartz and feldspar, and also some clay minerals. The nature of the carbonate fraction of the two soils indicates that they were formed by different depositional processes.

During drained triaxial shear the nonskeletal sand grains of both soils exhibit a lower degree of crushing when compared with that of the skeletal carbonate sands, and thus appear to be stronger foundation material.

Although the carbonate contents of the silt‐clay fractions of the two soils are similar, they exhibit markedly different plasticity characteristics . This is probably because of the microlevel cementation produced by carbonate material in one soil.

This study leads one to the conclusion that carbonate content alone should not be treated as a parameter which controls the engineering behavior of submarine soils; the nature and form of carbonate material must also be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号