首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time-independent finite-difference method and a fifth-order Runge–Kutta–Felhberg scheme were used to analyze the dynamic responses of sea-wave-induced fully non-linear sloshing fluid in a floating tank. The interaction effect between the fully non-linear sloshing fluid and the floating tank associated with coupled surge, heave and pitch motions of the tank are analyzed for the first time in the present pilot study. For the analysis of fluid motion in the tank, the coordinate system is moving (translating and rotating) with tank motion. The time-dependent water surface of the sloshing fluid is transformed to a horizontal plane and the flow field is mapped on to a rectangular region. The Euler equations as well as the fully non-linear kinematic free surface condition were used in the analysis of the sloshing fluid. The strip theory for linearized harmonic sea-wave loading was adopted to evaluate the regular encounter wave force. In addition, the dynamic coefficients used in the dynamic equations of tank motion were also derived based on strip theory and a harmonic motion of the tank. The characteristics of free and forced tank motions with and without the sloshing effect are studied. By the damping effect, the response of free oscillation will damp out and that of forced oscillation will approach a steady state. Without sea-wave action, the contribution of the sloshing load would enlarge the angular response of tank motion as well as the rise of free surface and the sloshing effect will delay the damping effect on angular displacement. On the contrary, under sea-wave action, the sloshing effect will decrease the dynamic response of tank motion and rise of free surface. The interaction, sloshing and coupling effects are found to be significant and should be considered in the analysis and design of floating tanks.  相似文献   

2.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

3.
This paper describes the simulation of the flow of a viscous incompressible Newtonian liquid with a free surface. The Navier–Stokes equations are formulated using a streamline upwind Petrov–Galerkin scheme, and solved on a Q-tree-based finite element mesh that adapts to the moving free surface of the liquid. Special attention is given to fitting the mesh correctly to the free surface and solid wall boundaries. Fully non-linear free surface boundary conditions are implemented. Test cases include sloshing free surface motions in a rectangular tank and progressive waves over submerged cylinders.  相似文献   

4.
A Navier–Stokes solver is used to examine steep waves as they run up a steep beach (10.54°). The volume of fluid method (VOF) is used to model the free surface. Comparison with experimental results shows reasonable overall agreement in the prediction of the free-surface, velocities and accelerations within the flow. A spurious feature at the free-surface was found which does reduce the quality of the results. For a steep wave we see the transition from a steep wave front to a smooth run-up tongue at the beach that is in qualitative agreement with experiment.  相似文献   

5.
In this paper, a numerical wave model based on the incompressible Reynolds-averaged Navier–Stokes (RANS) and kε equations is used to estimate the impact of a solitary wave on an idealized beachfront house located at different elevations on a plane beach. The locations of the free surface are reconstructed by volume of fluid (VOF) method. The model is satisfactorily tested against the experimental data of wave runup, and the analytical solution of wave forces on vertical walls. The time histories of wave profiles, forces, and overturning moments on the idealized house are demonstrated and analyzed. The variations of wave forces and overturning moments with the elevation of the idealized beachfront house are also investigated.  相似文献   

6.
Three-dimensional fully nonlinear waves generated by moving disturbances with steady forward speed without motions are solved using a mixed Eulerian–Lagrangian method in terms of an indirect boundary integral method and a Runge–Kutta time marching approach which integrates the fully nonlinear free surface boundary conditions with respect to time.A moving computational window is used in the computations by truncating the fluid domain (the free surface) into a computational domain. The computational window maintains the computational domain and tracks the free surface profile by a node-shifting scheme applied within it. An implicit implement of far field condition is enforced automatically at the truncation boundary of the computational window.Numerical computations are applied to free surface waves generated by Wigley and Series 60 hulls for the steady problem. The present numerical results are presented and compared with existing linear theory, experimental measurements, and other numerical nonlinear computations. The comparisons show satisfactory agreements for these hydrodynamic problems.  相似文献   

7.
Pressure variations and three-dimensional effects on liquid sloshing loads in a moving partially filled rectangular tank have been carried out numerically and experimentally. A numerical algorithm based on the volume of fluid (VOF) technique is used to study the non-linear behavior and damping characteristics of liquid sloshing. A moving coordinate system is used to include the non-linearity and avoid the complex boundary conditions of moving walls. The numerical model solves the complete Navier–Stokes equations in primitive variables by using of the finite difference approximations. In order to mitigate a series of discrete impacts, the signal computed is averaged over several time steps. In order to assess the accuracy of the method used, computations are compared with the experimental results. Several configurations of both baffled and unbaffled tanks are studied. Comparisons show good agreement for both impact and non- impact type slosh loads in the cases investigated.  相似文献   

8.
依据雷诺方程和k-ε紊流模型,按流体体积(VOF)法追踪波浪自由表面,采用源造波法,建立数值波浪水槽,数值模拟波浪对复杂结构形式海堤的作用.数值模拟结果与经验公式、物理模型试验结果基本符合,说明所建立的数值波浪水槽合理可行.揭示了不规则波作用下复杂结构形式海堤波浪力分布规律,模拟了堤前波浪形态变化,为探讨合理的海堤结构形式提供了依据.  相似文献   

9.
任兴月  陶军  彭伟 《海洋工程》2018,36(4):78-87
为了研究斜向入射波浪,基于三维不可压缩两相流模型,开发了一套圆形数值波浪水池数值模型。在圆形波浪水池中,通过源项造波法成功生成了任意入射方向的波浪,并且利用人工摩擦项模拟阻尼区以数值耗散反射波浪。模型基于嵌入式多块网格体系,采用FVM法(finite volume method)离散Navier-Stokes方程,VOF法(volume of fluid)追踪自由水面。试验结果表明,斜向入射波浪的模拟结果与理论值基本一致,圆形波浪水池在模拟斜向入射波浪时,有效区域的面积较传统波浪水池显著增大,而且有效区域受波浪入射角度的影响也较小。同时,通过叠加多列斜向入射波浪,模拟出了多向交叉波列,并通过与理论结果对比,发现其具有较高的精度。  相似文献   

10.
When a vessel is damaged, seawater floods into the damaged compartments and subsequently influences the motion of the vessel. Furthermore, the vessel’s behaviour affects the floodwater motion. In this paper, a Navier-Stokes (NS) solver with a free surface capturing technique, i.e., the volume of fluid (VOF) method, was developed to numerically simulate water flooding into a damaged vessel. To verify the developed solver, a 2-D and a 3-D dam break problems were tested. The numerical results coincide well with the experimental results and with the published numerical results. Additionally, it was used to solve the problems of linear and non-linear liquid sloshing in a hexahedral tank. The numerical results are satisfactory in comparison with the experimental results and analytical solutions. Finally, the phenomenon of water flooding into a damaged compartment of a Ro-Ro ferry was simulated numerically. The computed results are in good agreement with the experimental data.  相似文献   

11.
Fully nonlinear wave-body interactions with surface-piercing bodies   总被引:1,自引:0,他引:1  
W.C. Koo  M.H. Kim   《Ocean Engineering》2007,34(7):1000-1012
Fully nonlinear wave-body interactions for stationary surface-piercing single and double bodies are studied by a potential-theory-based fully nonlinear 2D numerical wave tank (NWT). The NWT was developed in time domain by using boundary element method (BEM) with constant panels. MEL free surface treatment and Runge–Kutta fourth-order time integration with smoothing scheme was used for free-surface time simulation. The acceleration-potential scheme is employed to obtain accurate time derivative of velocity potential. Using the steady part of nonlinear force time histories, mean and a series of higher-harmonic force components are calculated and compared with the experimental and numerical results of other researchers. The slow-decaying second-harmonic vertical forces are investigated with particle velocities and corresponding body pressure. Typical patterns of two-body interactions, shielding effect, and the pumping/sloshing modes of water column in various gap distances are investigated. The pumping mode in low frequencies is demonstrated by the comparison of velocity magnitudes.  相似文献   

12.
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.  相似文献   

13.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

14.
Doo Yong Choi  Chin H. Wu   《Ocean Engineering》2006,33(5-6):587-609
A new three-dimensional, non-hydrostatic free surface flow model is presented. For simulating water wave motions over uneven bottoms, the model employs an explicit project method on a Cartesian the staggered gird system to solve the complete three-dimensional Navier–Stokes equations. A bi-conjugated gradient method with a pre-conditioning procedure is used to solve the resulting matrix system. The model is capable of resolving non-hydrostatic pressure by incorporating the integral method of the top-layer pressure treatment, and predicting wave propagation and interaction over irregular bottom by including a partial bottom-cell treatment. Four examples of surface wave propagation are used to demonstrate the capability of the model. Using a small of vertical layers (e.g. 2–3 layers), it is shown that the model could effectively and accurately resolve wave shoaling, non-linearity, dispersion, fission, refraction, and diffraction phenomena.  相似文献   

15.
S.K. Lee  S. Surendran  Gyoungwoo Lee   《Ocean Engineering》2005,32(14-15):1873-1885
The concept of live fish tanks in trawlers is to use the catch in a better condition and to reduce marine pollution. It also reduces the infrastructure meant to freeze the catch to preserve it for longer period. But the presence of additional free surface in the vessel challenges the stability of the vessel. This is besides the sloshing effect due to the moving liquid mass in the tank. Roll motions are initiated due to various factors related to the hull characteristics of the vessel, loading and operating conditions and its interaction with the environment. Location of fish tank, its orientation, arrangement of baffles inside the tank to reduce the free surface affects and careful design of tank opening are to be given priority during the design, manufacturing and tank testing. The results obtained from tank test of model are compared with that of analytical method. The non-linear roll performance become further complicated due to the free surface and sloshing effects of the mass in the live fish tank. Wave makers are used for generating waves under laboratory conditions compatible with the scaled down model of the trawler model. The tests are conducted in the towing tank of Pusan National University.  相似文献   

16.
This study has been undertaken to quantify the tank wall effects on resistance estimation of ship models. Given the finite width of a tank, the flow around a ship model has been numerically modelled and the pressure and pressure related drag have been estimated.Since the model runs at speeds essentially in the laminar and transient speed range, an inviscid model has been chosen for obtaining the pressure drag component in the numerical studies. Grid dependency study has been done to optimize the mesh in the control volume for the numerical studies. An unstructured grid consisting of hexahedral cells has been used in the volume of fluid (VOF) model. The model chosen is a medium speed, ocean going barge and the residuary resistance has been obtained for different tank width conditions. The tank width has been defined using a non-dimensionalized parameter W/B (tank width W, model width B) ratio. The study shows that the residuary resistance obtained at W/B=5.0 is free from tank wall influence for the chosen model. The findings of the study have been compared by testing two geosim models under the same tank width conditions. The residuary resistance values have been compared with numerical results. The combined numerical experimental approach provides interesting results of consistency for comparison. The tank wall influences suggested by the numerical study are well quantified in the experimental study and give useful guideline for limiting wall influences.  相似文献   

17.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

18.
Unsteady nonlinear wave motions on the free surface in shallow water and over slopes of various geometries are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier–Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. Either linear or Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with various wave periods and sea bottom slopes in surf zone. The results are compared with other existing computational and experimental results. Agreement between the experimental data and the computation results is good.  相似文献   

19.
The hydrodynamic problem of a two dimensional wedge tank filled with liquid entering a calm water surface is analysed based on the incompressible velocity potential theory. The motion effect of inner liquid on the entry process is investigated through comparison with the result containing equivalent solid mass or the liquid being frozen. The problem is solved through the boundary element method in the time domain. Two separated computational regions are constructed. One is the inner domain for the internal liquid, and the other is the outer open domain for the open water. The former is solved in the physical coordinate system, and the latter is solved in a stretched coordinate system. The solutions of two separated domains are connected through the motion of the body. The auxiliary function method is extended to decouple the nonlinear mutual dependence between fluid loads from two separated domains and the body motion. Detailed results for wedge motion, external impact pressure and free surface, and for internal pressure, free surface deformation and liquid motion are provided. Through comparison with the results of a wedge tank with frozen ice, in-depth discussion on the effect of the inner liquid is provided.  相似文献   

20.
利用完全非线性数值波浪水槽技术研究水下平板与波浪的相互作用。假定水下平板厚度极薄、刚性,位于有限水深并且非常接近自由水面。应用四阶龙格库塔方法追踪每一时刻的波面形状,采用阻尼层来吸收反射波以保证算法的稳定性,同时引入平滑和重组的方法抑制自由表面控制点的较高梯度。通过对波浪与浮动圆柱相互作用的数值模拟证实了数值波浪水槽方法的有效性,计算结果与线性理论吻合良好。在波浪数值水槽方法中引入造波板模拟波浪产生并与水下平板发生相互作用,应用傅立叶解析方法对波面变形、波浪力作了分析。结果表明在板非常接近自由水面的情况下会表现出现很强的非线性,揭示了线性理论的局限性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号