首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Applied Geochemistry》1995,10(5):531-546
The petrography, fluid inclusion thermometry and isotope geochemistry of diagenetic cements are used to reconstruct the pore-fluid history of the Middle Jurassic Brent Group reservoir sandstones in the Alwyn South area of the U.K. North Sea. The study focuses on a relatively limited area of three adjacent reservoir compartments at successively higher structural levels. The cement assemblage of kaolinite, quartz and illite has resulted in severe deterioration of otherwise good reservoir quality. Early precipitation of vermiform and late blocky kaolinite was succeeded by a period of relatively intense illite precipitation. Temperature estimates for kaolinite precipitation of 80°C andδ18O of ≈ + 15‰ (±3‰) suggest co-existing fluids ofδ18O ≈ −3‰. Quartz cementation overlapped both kaolinite and illite formation. Fluid inclusion data indicate that quartz cementation took place at temperatures of 109±7°C. Pore fluid salinities were ≈4 wt% NaCl with a H2OO isotopic composition of ≈ -1 %o ± 0.5‰ SMOW. The fluids which precipitated coexisting illite were compositionally homogeneous with equilibriumδ18O water compositions of +0.5‰ SMOW. Illite SD values range from −33 to −50‰ SMOW. These fluid inclusion and isotopic data suggest that both quartz and illite were precipitated from pore waters with a uniform, marine signature. This is consistent with the predominantly marine to paralic depositional context of the Brent Group in Alywn South. Illite precipitation was followed by hydrocarbon emplacement between the Middle Eocene and Lower Oligocene.  相似文献   

2.
We discuss the nature of the ore-forming hydrothermal fluid in the Noya gold-bearing calcite-quartz-adularia veins of central Kyushu, Japan on the basis of oxygen, carbon, and strontium isotope ratios, and aqueous speciation calculations for the present-day geothermal fluid. The isotopic values of the Noya ore-forming fluid were estimated to be −6.5‰ for δ13C and −7.5‰ for δ18O. The oxygen isotopic equilibrium temperatures for vein calcite are more than 180°C at the bottom of the Noya mineralization zone, and decrease with increasing elevation. As the temperature decreased, the dominant carbon species in the fluid changed from H2CO3 to HCO3- at about 120°C. The equilibrium temperatures for vein quartz are consistent with the calcite calculations. The carbon and oxygen isotope trends of the Noya vein calcite and the isotope ratios of strontium suggest that the fluids that precipitated the Noya veins were controlled by an andesite-dominated geology. Chondrite-normalized REE patterns for the white-colored veins from wells 51-WT-1 and 51-WT-2 displayed a light REE-rich pattern with positive Eu anomalies, suggesting the existence of a reducing environment for the fluid. The pyrite-rich gray-colored veins and a silicified rock from well 51-WT-2 showed higher REE concentrations than did the white veins. Altered host andesitic rocks have similar REE patterns to that of the silicified rock, and have higher REE contents than the others in the drill cores. Aqueous speciation calculations showed that the fluid in the hydrothermal reservoir is currently in muscovite stability. The fluid at the ore-mineralization stage may have contained more potassium or have had a higher pH, so that adularia precipitated with calcite and quartz, as well as gold. Fluid boiling at depth in the system produced the gold-bearing calcite-quartz-adularia veins.  相似文献   

3.
This paper assesses chemical-mineralogical changes resulting from hydrothermal alteration associated with granite-hosted gold mineralization in southern Salamanca province, Spain. Within the mineralized veins, along planes of quartz growth, two types of fluid inclusions were observed. One type is rich in CH4 with minor CO2, the other is rich in H2O with CO2 (± CH4). These are interpreted as reflecting the immiscibility of an initial fluid rich in H2O-CH4 and some CO2. Inclusions with similar composition are seen at the silicification formed at the granite contact with host rocks. However, differences in P-T conditions and immiscibility of fluids are indicated by the microthermometric study and relation of the inclusions. These are consistent with the temperatures calculated from the arsenopyrite-pyrite geothermometer. Formation temperatures of 445 ± 15° C were deduced for the mineralization at the granite contact and temperatures not exceeding 386° C for the vein mineralization.

Metasomatically altered granites are depleted in Na and K in comparison to fresh granites. A gain in CO2 has been measured in the altered rocks. No correlation was found between gold contents and any of the major or trace elements analyzed.

δ34S arsenopyrite values suggest a variable source of sulfur. Calculated δDfluid values show significant variability (?66 to ?37%0 SMOW), whereas δ18O fluid values show small variation (from +7.6 to +8.4%o SMOW). These values for the fluids are consistent with interaction between magmatic fluids and metamorphic rocks. Gold deposition in quartz veins could be explained by the loss of H2S during fluid immiscibility.  相似文献   

4.
The Géant Dormant gold mine is a sulfide-rich quartz vein gold deposit hosted by a volcano-sedimentary sequence and an associated felsic endogenous dome and dikes. The auriferous quartz-sulfide veins were preceded by two synvolcanic gold-bearing mineralizing events: early sulfidic seafloor-related and later disseminated pyrite in the felsic dome. This deposit differs from classical Archean auriferous quartz vein deposits by the low carbonate and high sulfide contents of the veins and by their formation prior to ductile penetrative deformation. The δ18O values of quartz associated with seafloor-related auriferous sulfides average 11.9 ± 0.6‰ (n = 3). The seafloor hydrothermal fluids had a δ18O value of 3.2‰ calculated at 250 °C. The oxygen isotope composition of quartz and chlorite from veins average 12.5 ± 0.3‰ (n = 20) and 5.9 ± 1.1‰ (n = 4) respectively. Assuming oxygen isotope equilibrium between quartz and chlorite, the veins formed at a temperature of ∼275 °C, which is consistent with the calculated temperature of 269 ± 10 °C from chlorite chemistry. The gold-bearing fluids had a δ18O value of 4.7‰ calculated at 275 °C. The δ34S values of sulfides from the three gold events range from 0.6 to 2.8‰ (n = 32) and are close to magmatic values. Sulfur isotope geothermometry constrains the sulfide precipitation in the gold-bearing veins at a temperature of ∼350 °C. The similarity of the isotope data, the calculated δ18O of the mineralizing fluids and the likely seawater fluid source suggest that the three mineralizing events are genetically related to a volcanogenic hydrothermal system. The high value of the auriferous fluids (δ18O = 4.7‰) is attributed to a significant magmatic fluid contribution to the evolved seawater-dominated convective hydrothermal system. The two-stage filling of veins at increasing temperature from quartz-chlorite (275 °C) to sulfides (350 °C) may reflect the progressive maturation of volcanogenic hydrothermal systems. These results, together with field and geochemical data, suggest that formation of gold-rich volcanogenic systems require specific conditions that comprise a magmatic fluid contribution and gold from arc-related felsic rocks, coeval with the mineralizing events. This study shows that some auriferous quartz-vein orebodies in Archean terranes are formed in volcanogenic rather than mesothermal systems. Received: 12 December 1998 / Accepted: 5 July 1999  相似文献   

5.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

6.
Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H2O, H2O−CO2 and CO2 inclusions. H2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200°C and 175 to 250°C, respectively. The salinity of aqueous inclusions, based on ice melting, varies between 6.1 and 8 equiv. wt% NaCl. On the other hand, H2O−CO2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325°C, and their salinity, based on clathrate melting, ranges between 0.8 and 3.8 equiv. wt% NaCl. CO2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from 0.52 to 0.66 g/cm3. The partial mixing of H2O−CO2 and salt H2O−NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.  相似文献   

7.
The Aerhada Pb-Zn-Ag deposit is located in the western segment of the Great Hinggan Range Ag-Pb-Zn-Cu-Mo-Au-Fe metallogenic belt in NE China. Orebodies occur mainly as vein type and are hosted by sandstone and siliceous slate. Three stages of primary mineralization, including an early arsenopyrite-pyrite-quartz, a middle polymetallic and silver sulfides-quartz and a late sphalerite-pyrite-calcite-fluorite are recognized. Four types of fluid inclusions have been identified in the ore-bearing quartz and fluorite veins, i.e., liquid-rich, gas-rich, three-phase CO2 aqueous inclusions, and pure gas or liquid aqueous inclusions. Microthermometric studies on fluid inclusions reveal that homogenization temperatures from early to late stages range from 253° to 430 °C, 195° to 394 °C and 133° to 207 °C, respectively. Fluid salinities range from 2.9 to 14.0 wt.% NaCl equiv. The vapor composition of the ore fluid is dominated by H2O, CO2 and CH4, with minor proportions of N2. The fluid δ18OH2O and δDH2O values vary from +1.6 to +9.3‰ and −122 to −56‰, respectively, and reflect a magmatic fluid and a meteoric fluid dominant hydrothermal system for the early and late stages of mineralization, respectively. The calculated δ34SH2S values of hydrothermal fluids in equilibrium with sulfides range from +5.2 to +7.1‰, suggesting a mixed source for sulfur, i.e., the local magmatic and sedimentary rocks. The Pb isotope compositions of sulfides are similar to those of the local magmatic and sedimentary rocks, implying that lead and possibly silver relate to these sources. The noble gas isotope compositions of fluid inclusions hosted in ore minerals suggest that the ore-forming fluids were dominantly derived from a deep mantle source. Fluid mixing and dilution are inferred as the dominant mechanisms for ore deposition. The Aerhada Pb-Zn-Ag deposit can be classified as a medium to low temperature hydrothermal vein type deposit.  相似文献   

8.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

9.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

10.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

11.
Fluid plays a key role in metamorphism and magmatism in subduction zones. Veins in high‐pressure (HP) to ultrahigh‐pressure (UHP) rocks are the products of fluid‐rock interaction, and can thus provide important constraints on fluid processes in subduction zones. This contribution is an integrated study of zircon U–Pb and O–Hf, as well as whole‐rock Nd–Sr isotopic compositions for a quartz vein, a complex vein, and their host eclogite in the Sulu UHP terrane to decipher the timing and source of fluid flow under HP‐UHP metamorphic conditions. The inherited magmatic zircon cores from the host eclogite constrain the protolith age at c. 750 Ma. Their variable εHf(t) values from ?1.11 to 2.54 and low δ18O values of 0.32–3.40‰ reflect a protolith that formed in a rift setting due to the breakup of the supercontinent Rodinia. The hydrothermal zircon from the quartz and the complex veins shows euhedral shapes, relatively flat HREE pattern, slight or no negative Eu anomaly, low 176Lu/177Hf ratios, and low formation temperatures of 660–690 °C, indicating they precipitated from fluids under HP eclogite facies conditions. This zircon yielded similar U–Pb ages of 217 ± 2 and 213 ± 3 Ma within analytical uncertainty, recording the timing of fluid flow during the exhumation of the UHP rock. It is inferred that the fluids might be of internal origin based on the homogeneity of δ18O values of the hydrothermal zircon from the quartz (?2.41 ± 0.13‰) and complex veins (?2.35 ± 0.12‰), and the metamorphic grown zircon of the host eclogite (?2.23 ± 0.16‰). The similar εNd(t) values of the whole rocks also support such a point. Zircon O and whole‐rock Nd isotopic compositions are therefore useful to identify the source of fluid, for they are major and trace components in minerals involved in metamorphic reactions during HP‐UHP conditions. On the other hand, the hydrothermal zircon from the veins and the metamorphic zircon from the host eclogite exhibit variable εHf(t) values. Model calculation suggests that the Hf was derived from the breakdown of major rock‐forming minerals and recycling of the inherited magmatic zircon. The variable whole‐rock initial 87Sr/86Sr ratios might be caused by subsequent retrograde metamorphism after the formation of the veins.  相似文献   

12.
《Ore Geology Reviews》2009,35(4):580-596
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

13.
Electron microprobe analyses of gold and associated ore minerals as well as stable isotope analyses of sulphide and carbonate minerals were performed in order to determine the metal and fluid sources and temperature of the mineralizing systems to better understand the genesis of the Atud gold deposit hosted in the metagabbro–diorite complex of Gabal Atud (Central Eastern Desert, Egypt). The gold can be classified as electrum (63.6–74.3 wt.% Au and 24.6–26.6 wt.% Ag) and is associated with arsenopyrite and As-bearing pyrite in the main mineralization (gold-sulphides) phase within the main mineralized quartz veins and altered host rocks. Based on the arsenopyrite geothermometer, As-contents (29.3–32.7 atom%) in arsenopyrite point to deposition in the Log ?S2 and T ranges of ?10.5 to ?5.5 and 305–450°C, respectively, during the main mineralizing phase. Based on the δ34S isotopic compositions of the sulphides, they are originated from magmatic fluids in which the sulphur is either sourced directly from magma or remobilized from the magmatic rocks (gabbroic rocks). On the other hand, calcite formed from fluids having mainly magmatic mixed with variable metamorphic signatures based on its δ13C and δ18O values. This work concluded that the gold-bearing ores at Atud deposit have magmatic sources leaching from the country intrusive rocks during water/rock interactions then remobilized during a metamorphic event. Therefore, the Atud gold deposit is classified as an intrusion-related gold deposit, in which the gabbro–diorite host intrusion acted as the source of metals which were mobilized and deposited as a result of the effects of NW–SE shearing.  相似文献   

14.
Gold in the Sahinli and Tespih Dere intermediate sulfidation gold-base metal deposits in Western Turkey occurs in relatively deep epithermal quartz veins along with base metal minerals which have epithermal textures, including plumose quartz, vug infills, comb and cockade textures and matrix-supported milled breccias. The total sulfide content of the veins in the area is variable ranging from < 1% to 60% and is dominated by pyrite, galena, sphalerite and chalcopyrite. Sphalerite is Fe-poor (0.6 to 1.4 mol% FeS). Minor amounts of Ag-rich tetrahedrite are present. Primary hydrothermal alteration minerals include illite/muscovite, mixed-layer illite/smectite (11.6 Å) and clinochlore towards the east and, alunite, dickite/nacrite and pyrophyllite towards the west at Sahinli; major illite/muscovite and dickite occur at Tespih Dere and Sarioluk, respectively.Fluid inclusions in main-stage quartz at Sahinli are only liquid-rich, with homogenization temperatures ranging from 220 to 322 °C and the majority of Th values between 250 and 300 °C. Salinity ranges from 4.3 to 6.9 wt.% NaCl equiv. First ice-melting temperatures (Tmf) between ?24.5 and ?19.0 °C indicate that the fluids were dominated by NaCl  H2O during mineralization. The relatively higher average Th at the Tespih Dere deposit (295 °C) is attributed to a relatively deeper level of exposure.Calculated δ18O values indicate that ore-forming hydrothermal fluids in the study area had δ18OH2O ranging from + 1.1 to + 9.7‰ (average = 3.8‰), strongly 18O-enriched compared with present-day hydrothermal meteoric water in the area (δ18O = ?8.5‰). δD values of fluid inclusions in quartz range from ?58 to ?93‰ and δD values of clay minerals and alunite from ?40 to ?119‰. δD values from intermediate argillic alteration (average = ?68‰) in the study area are very similar to δD values of the present-day local geothermal system (average δD = ?54‰) whereas δD values from advanced-argillic alteration (average δD = ?33‰) are very different from the present-day local geothermal system.The δ34S values in samples from the Sahinli and Tespih Dere deposits average ?2.9‰ for pyrite; ?3.3‰ for chalcopyrite; ?5.4‰ for sphalerite and ?7.6‰ for galena. These data are consistent with derivation of the sulfur from either igneous rocks or possibly from local wallrock.  相似文献   

15.
Abstract: The Dongping deposit, located near the center of the northern margin of the north China craton, is one of the largest gold deposits in China. It is spatially, temporally, and genetically associated with the shallowly-emplaced Hercynian Shuiquan-gou alkaline intrusive complex. The complex intrudes high-grade metamorphic rocks of the Archean Sanggan Group along a deep-seated fault zone within the north China craton. Four major ore bodies (Nos. 1, 2, 22, and 70), consisting mainly of a set of en echelon lenses and veins, have been delineated at the Dongping deposit. Hypogene hydrothermal activities can be divided into four periods from early to late including: (1) gold-bearing K–feldspar–quartz stockworks and veins; (2) disseminated sulfide and gold zones; (3) gold-bearing quartz veins, and (4) barren calcite-quartz veins. Individual veins and stockwork systems can be traced along strike for 125 to 600 m and downdip for 100 to 600 m; they range from 0. 5 to 3 m in thickness. The mineralogical composition of the ore in the first three hypogene periods is relatively simple. It is composed of pyrite, galena, sphalerite, magnetite, specularite, chalcopyrite, native gold, electrum, calaverite, and altaite. Gangue minerals include K–feldspar, quartz, sericite, chlorite, epidote, albite, and calcite. Ore grade averages 6 g/t Au, but varies between 4. 14 and 22. 66 g/t Au. Gold is generally fine-grained and not visible in hand specimen. Fluid inclusions in ore-bearing quartz of periods 1, 2, and 3 are CO2–rich, variable salinity (2. 5–21 wt% equiv. NaCl), and have variable homogenization temperatures of 195° to 340°C. Quartz in the gold-bearing K–feldspar–quartz stockworks (period 1), disseminated sulfide and gold zones (period 2), and the gold-bearing quartz veins (period 3) has calculated δ18OH2O values between –1. 7 and 6. 9%, and δ values of fluid inclusion waters between –101 and –66%. All these isotope data of the ore-forming fluids plot between the magmatic fluid field and the meteoric water line. Sulfide minerals disseminated in host rocks show positive δ34S values of 1. 9 to 3. 5%. Pyrite separates from he gold-bearing K–feldspar–quartz stockworks and veins (period 1) have a δ34S range of –4. 3 to 0. 5%, whereas δ34S values of pyrite, chalcopyrite, galena, and sphalerite from the disseminated sul-fide and gold zones (period 2) and the gold-bearing quartz veins (period 3) vary from –5. 3 to –13. 4%. Gold ores are also characterized by relatively radiogenic lead isotope compositions compared to those of the alkaline syenite host rock. The data are interpreted as indicative of a mixing of lead from the alkaline intrusive complex with lead from Archean metamorphic rocks. The combined fluid inclusion measurements, sulfur, oxygen, hydrogen, and lead isotope data, and petrological observations indicate that the Dongping deposit was formed from the mixing of these magmatic fluids with meteoric waters. The deposit is, therefore, believed to be a product of Hercynian alkaline igneous processes within the north China craton.  相似文献   

16.
Post-Variscan hydrothermal base-metal mineralization of the Taunus ore district, SE Rhenish Massif (Germany), has been studied through combination of stable (S, C, O) and radiogenic (Pb) isotope geochemistry. Based on field and textural observations, five hydrothermal mineralization types can be distinguished. These are (1) tetrahedrite–tennantite bearing quartz–ankerite veins, (2) quartz veins with Pb–Zn–Cu ores, (3) giant quartz veins, (4) metasomatic dolomite in Devonian reef complexes, and (5) calcite–(quartz) mineralization in Devonian reefs. The δ18OV-SMOW quartz values of base-metal veins are in the range of 18.0–21.5‰, whereas those of giant quartz veins have lower values of 15.9–18.6‰. This difference reflects the higher fluid fluxes and smaller extent of rock-buffering for the giant quartz veins. Hydrothermal carbonates from the tetrahedrite and Pb–Zn–Cu veins have variable but distinctly negative δ13CV-PDB values. They can be explained by contributions from fluids that had picked up low δ13CV-PDB carbon via oxidation of organic matter and from fluids that interacted with Devonian reef carbonate having positive δ13CV-PDB. Metasomatic dolomite has positive δ13CV-PDB values that closely reflect those of the precursor limestone. By contrast, carbonates of calcite–(quartz) mineralization have negative δ13CV-PDB values which are negatively correlated with the δ18O values. This pattern is explained by fluid mixing processes where contributions from descending cooler fluids with rather low salinity were dominant. The isotope data suggest that tetrahedrite veins, Pb–Zn–Cu veins, and giant quartz veins formed from fluid mixing involving two end-members with contrasting chemical features. This is supported by fluid inclusion data (Adeyemi, 1982) that show repeated alternation between two different types of fluid inclusions, which are hotter intermediate- to high-salinity NaCl–CaCl2 fluids and cooler low-salinity NaCl-dominated fluids. The metal-rich saline fluids were likely generated at the boundary between the pre-Devonian basement and the overlying Devonian–Carboniferous nappe pile. Fault activation resulted in strong fluid focusing and upward migration of large volumes of hot Na–Ca brines, which mixed with cooler and more dilute fluids at shallower crustal levels. Variable contributions from both fluid types, local fluid fluxes, temperature variations, and variations in pH and oxidation state have then controlled the vein mineralogy and metal inventory.  相似文献   

17.
Orogenic gold vein deposits in the Xiaoqinling district are situated in a basement-cored uplift along the southern margin of the North China craton. The deposits are hosted by Late Archean to Paleoproterozoic amphibolite-facies country rocks, varying in lithology from clastic and chemical sedimentary units to felsic and mafic volcanic rocks and plutons. Absolute and relative age relationships indicate a late Mesozoic emplacement of the lodes, which is subsequent to the deformation associated with the Middle to Late Triassic Qinling orogen along the craton margin. All auriferous quartz veins are hosted in faults. The ores are generally composed of quartz veins with various amounts of pyrite, galena, chalcopyrite, sphalerite, and carbonates. Mineralization can be separated into three distinct stages.

Ore fluids are H2O dominant, with approximately 20 to 30 and 10 to 20 mole% CO2 for gold-bearing stage I and II veins, respectively. Vein formation pressures and temperatures were 2.2 kbar and 300 to 370°C for stage I and 1.6 kbar and 250 to 320°C for stage II. The narrow range of δ18O values for ore fluids from the deposits throughout the Xiaoqinling district indicate a common deep fluid source, most likely of magmatic origin. The 34S data suggest sulfur originated from a magmatic fluid of approximately 2 ± 2%, with significant local sulfur contributions leading to large variations in the ore-stage sulfide minerals. The most probable mechanism for the deposition of gold is phase separation caused by the partial loss of volatiles such as CO2 and CH4.  相似文献   

18.
The Jinwozi gold deposit consists of gold-bearing quartz veins in a biotite granodiorite of Hercynian age (zircon U-Pb age ≈ 335.7 Ma). Ore mineralogy is simple. In addition to native gold, there are only small amounts of sulfides, mainly pyrite and minor sphalerite, chalcopyrite and galena. δ34S values average 6.69‰, and δ18O 13.99‰ Abundant CO2 is contained in fluid inclusions from quartz. Homogenization temperatures of fluid inclusions are between 186 and 262 °C. REE distribution patterns indicate that the igneous mass may have been derived from a common initial material of calcareous-argillaceous sediments and alkali basalts as the country rocks. In other words, the Jinwozi granodiorite is of remelting origin from crustal material. Isotopic evidence of S, O and Pb shows that the ore-forming material is genetically related to magmatic hydrothermal activity.  相似文献   

19.
Abstract: The origin of mineralizing fluids responsible for the Hishikari vein-type epithermal Au deposits was studied on the basis of the hydrogen isotopic ratio (δD) of the inclusion fluid from vein quartz and adularia. The origin of hydrothermal fluids was estimated by combination of the present δ values and the oxygen isotopic ratios (δ18O) previously reported by Shikazono and Nagayama (1993). The water in the fluid inclusions was extracted by means of decrepitation of quartz at 500°C. Hydrogen was obtained by reduction of the collected water with Zn shot at 450°C. The δD values were determined by mass spectrometer. The δD values of inclusion fluid obtained from quartz range from –61 to –114%. These are significantly lower than the δD value of the thermal water presently venting from the Hishikari deposits and that of local meteoric water. Hydrogen isotopic fractionation between water and amorphous silica, which might have initially precipitated from the hydrothermal fluids at least partly, is not a probable cause of this isotopic depletion, while some water might have been released from the initial hydrous amorphous silica during recrystallization to quartz observed presently. Thus, a part of ore fluids for the Hishikari deposits is supposed to have been originated from the water having anomalous δD values of lower than –100%. Such D depletion cannot be caused by simple oxygen-shift of meteoric water or by contribution of magmatic volatiles. The δD values of water released from the shale samples of the Shimanto–Supergroup, a major host to the Hishikari veins range from –132 to –148%. Therefore, the anomalous δD values of inclusion fluids from some vein quartz and adularia suggest that the water released from hydrous minerals of the sedimentary basement rocks by dehydration or the groundwater isotopically exchanged with sedimentary rocks at elevated temperatures during circulation, partly contributed to the hydrothermal fluids responsible for the Hishikari deposits.  相似文献   

20.
Abstract. Mineral assemblage, precipitation sequence and textures of the gold‐bearing veins from the Hishikari epithermal vein‐type deposits, southern Kyushu, Japan, were examined. In addition, fluid inclusion microthermometry and carbon and oxygen isotopic compositions of calcite were determined. Calcite, and that replaced by quartz, were commonly observed throughout the precipitation sequence of the veins. Thus, calcite must be a more common gangue constituent initially than observed presently. Association of calcite and electrum is observed immediately subsequent to columnar adularia in some vein samples. In addition, close association of electrum with pseudo‐acicular quartz, and electrum with truscottite were observed. The initial coprecipitation of electrum and calcite might be a common phenomenon in the gold‐bearing veins at the Hishikari deposits. The Th (homogenization temperature) data from the Honko‐Sanjin deposits are generally higher than those from the Yamada deposit. Samples that show association of calcite and electrum yielded higher Th (206–217°C, average) than the Th data from calcite associated with low‐grade Au ore or barren (180–204°C, average). The measured Tm (temperature of last melting point of ice) range from ‐0.4 to 0.0°C. The result suggests that the salinity of the hydrothermal solution was low during the precipitation both of calcite associated with Au mineralization and of barren calcite. Fluid inclusion evidence suggestive of boiling of hydrothermal solution for the precipitation of calcite was not recognized in the present work. The δ13C and δ18O values of calcite range from ‐10.8 to —4.7 % and from +3.2 to +15.2 %, respectively. The δ13C value of H2CO3 and the δ18O value of H2O in the hydrothermal fluids calculated assuming isotopic equilibrium with calcite using the temperature obtained by fluid inclusion microthermometry, range from ‐14.4 to ‐9.1 %, and from ‐6.2 to +5.5 %, respectively. Thus, the calculated δ18O values of H2O for calcite further confirm the presence of the 18O‐enriched ore fluids during the mineralization at the Hishikari deposits. The hydrothermal solution isotopically equilibrated with the sedimentary basement rocks was responsible for the gold mineralization associated with calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号