首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Narrow-waveband (100 Å) photoelectric slit-scan photometry of the Neptune disk is reported. Observations were concentrated within the strong CH4 band at λ7300 Å. For comparison, measurements were also made within a continuum waveband at λ6800 Å. Point spread function data were obtained in both colors. Qualitative estimates of the true intensity distribution over the Neptune disk were made. Within the λ6800-Å continuum band, Neptune appears as an essentially uniform disk. Within the λ7300 Å CH4 band, the planet exhibits strong limb brightening. Our results appear to require the presence of an optically thin layer of brightly scattering aerosol particles high in the Neptune atmosphere.  相似文献   

2.
The spectrophotometric (0.39 < λ < 0.7 λm) properties of three particle-size fractions (diameters <10 λm, <150 λm, and 420–850 λm) of sulfur have been investigated in the laboratory. Particle size, temperature, thermal history, and scattering geometry are all shown to influence the spectral reflectance of the normal (S8) sulfur samples and an “orange-colored” S8 sample produced by quenching molten sulfur. A scattering law consisting of a linear combination of lunar-like and Lambertian terms adequately describes the data for all particle sizes. Where sulfur is darkest (λ < 0.45 λm), the reflectance decreases with increasing particle size, whereas where sulfur is brightest (λ > 0.45 λm) the reflectance increases with decreasing particle size. In reflected light, the long wavelength edge of the strong ultraviolet absorption retreats smoothly to shorter wavelengths with decreasing temperature at ~1.6Å/°K, a value lower than the 2.2Å/°K value previously reported for transmitted light. Near opposition, sulfur powders are found to follow closely a Minnaert limb darkening law except where the reflectance is low, i.e., in the strong ultraviolet absorption band of the larger particle size fractions. It is clear from our data that quantitative comparisons between disk-integrated observations of Io and laboratory measurements of flat samples of sulfur are not adequate unless temperature effects and changes in scattering geometry are included.  相似文献   

3.
Mount  George H.  Linsky  Jeffrey L. 《Solar physics》1974,35(2):259-276
We have obtained center-to-limb photoelectric spectra of the CN(1,1) B-X bandhead region λ3868–3872 Å at Kitt Peak National Observatory. From these spectra and a detailed analysis of the formation of the CN (1, 1) spectrum we derive a best-fit upper photospheric model differing from the HSRA which is consistent with our previous CN(0, 0) λ3883 spectra. We derive a solar carbon abundance of log A c = 8.30 ± 0.10 compared to the HSRA value of log A c = 8.55 ± 0.10. In addition we specify the regions of formation for the CN(0, 0) λ3883.35 and CN(1, 1) λ 3871.38 bandheads at disc center and limb.  相似文献   

4.
The ultraviolet spectra of the stars RY Tau and HD 115043 from the Hubble Space Telescope are analyzed. RY Tau belongs to the classical T Tauri stars, while HD 115043 is a young (t~3×108 years), chromospherically active star. The most intense emission lines were identified, and their fluxes were measured. Low-resolution spectra of RY Tau and HD 115043 in the wavelength range 1160–1760 Å exhibit almost the same set of emission lines. However, first, the luminosity of RY Tau in these lines is approximately a factor of 300 higher than that of HD 115043, and, second, the relative line intensities differ greatly. The intensity ratio of the C IV λ1550, Si IV λ1400, and NV λ1240 doublet components is close to 1: 2 in the spectra of both stars. Judging by the continuum energy distribution, the spectral type of RY Tau is later than that of HD 115043. Synchronous flux variability in the C IV λ1550 and He II λ1640 lines in a time of ~20 min was detected in RY Tau. The flux rise in these lines was accompanied by a redshift of the intensity peak in the profiles by~50 km s?1. Intermediate-resolution spectra are used to study line profiles in the spectrum of RY Tau. In particular, the profiles of (optically thin) Si III]λ1892 and C III]λ1909 lines were found to be asymmetric and about 300 km s?1 in width. The (optically thick) C IV λ1550 doublet lines have similar profiles. The Mg II λ2800 doublet lines are also asymmetric, but their shape is different: they consist of a broad (?750 km s?1 at the base) emission component on which an interstellar absorption line shifted from the line symmetry center by about 20 km s?1 is superimposed. The intensity ratio of the Mg II λ2800 doublet components is?1.4. Whether there are molecular hydrogen lines in the spectrum of RY Tau is still an open question. It is shown that the emission lines in the ultraviolet spectrum of RY Tau cannot originate in a hydrostatically equilibrium chromosphere. It is argued that quasi-steady accretion of circumstellar matter is responsible for the emission.  相似文献   

5.
The spectral reflectances of Ariel, Umbriel, Titania, Oberon, and Triton were measured in 28 bandpasses between λ326 and λ976 nm on the night of 28/29 June 1974. These observations were made with the 200-in. Hale telescope and multichannel spectrometer. Bandpasses of 8 nm from λ326 to λ566 nm and 16 nm from λ592 to λ976 nm were employed. The spectral reflectances of Ariel, Oberon, and Titania increase from λ342 to λ534 nm and are relatively flat from λ550 to λ976 nm. Umbriel's reflectance decreases monotonically with increasing wavelength through the entire range of measured wavelengths. Triton is found to have a constant spectral reflectance.  相似文献   

6.
We consider the formation mechanisms of “negative”-intensity spots in the radio band for various astrophysical conditions. For wavelengths λ<1.5 mm, the regions of reduced temperature (relative to the cosmic microwave background radiation, CMBR) are shown to be produced only by high-redshift objects moving at peculiar velocities. The main processes are CMBR Thomson scattering and bremsstrahlung. We show that the effect δT/T can be ~10?5 in magnitude. We derive simple analytic expressions, which allow the redshifts, electron densities, and linear sizes of these regions to be estimated from observed spectral and spatial parameters. Additional observational methods for refining these parameters are outlined.  相似文献   

7.
Mitsuo Kanno 《Solar physics》1983,89(2):253-259
The weakening of the EUV line emission near the Sun's limb is studied to acquire information about the absorbers causing the weakening. The equivalent optical thickness of the absorbers for the Lyman continuum is determined as a function of the distance from the center of the solar disk by use of Skylab spectroheliograms in Oiv λ554 and Ovi λ1032. It is found that (1) the weakening cannot be explained by shielding of EUV emitting sources in terms of completely opaque spicules and (2) the distribution of the equivalent optical thickness on the solar disk is extremely flat with a maximum at a position of ~ 5″ above the white-light limb. The results imply that the absorbers are a number of mass blobs consisting of cool chromospheric material which overlies the EUV emitting sources. It is suggested that both the EUV emitting sources and the absorbers are the remnants of Hα-emitting spicules which are diffused into the corona.  相似文献   

8.
Reticon spectroscopic observations of the yellow symbiotic star AG Draconis are reported. Small rapid (15–30 min) changes in the intensities of the Hei λ5015 Å and Hei λ6678 Å singlet lines, and of the Hγ line are observed. The first observational evidence of presence of the unidentified band at 7088 Å in this star is also reported.  相似文献   

9.
We study the changes of the CaI λ6102.7 Å line profile and the magnetic field structure during the 1B/M2.2 while-light flare of August 12, 1981. The two brightest flare knots located in the penumbra of a sunspot with a δ configuration are investigated. The 1 ± V line profiles are analyzed. The reduction and analysis of our observations have yielded the following results. (1) The line profiles changed significantly during the flare, especially at the time of optical continuum emission observed near the flare maximum. In addition to the significant decrease in the depth, a narrow polarized emission whose Zeeman splitting corresponded to a longitudinal magnetic field strength of 3600 Gs was observed. This is much larger than the magnetic field strength in the underlying sunspot determined from the Zeeman splitting of absorption lines. (2) The largest changes of the CaI λ6102.7 Å line profile observed during the flare can lead to an underestimation of the longitudinal magnetic field strength measured with a video magnetograph by a factor of 4.5, but they cannot be responsible for the polarity reversal. (3) A sharp short-term displacement of the neutral line occurred at a time close to the flare maximum, which gave rise to a reversed-polarity magnetic field on a small area of the active region, i.e., a magnetic transient. This can be interpreted as a change in the inclination of the magnetic field lines to the line of sight during the flare. The short-term depolarization of the CaI λ6102.7 Å line emission observed at the other flare knot can also be the result of a change in the magnetic field structure. (4) These fast dynamic changes of the magnetic field lines occurred after the maximum of the impulsive flare phase and were close in time to the appearance of type II radio emission.  相似文献   

10.
Finn  G. D.  Jefferies  J. T. 《Solar physics》1974,34(1):57-75

A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at λ1932 and λ1936 through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. Our results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  相似文献   

11.
We compare images of Comet Hale-Bopp (1995 O1) in HCN and CN taken near perihelion (April 1, 1997) to determine the origin of CN in comets. We imaged the J=1→0 transition of HCN at λ=3 mm with the BIMA Array. Data from two weeks around perihelion were summed within four phase bins based on the rotational period of the comet. This increases both the signal-to-noise ratio and the u-v coverage while decreasing the smearing of the spatial features. The similarly phased narrowband CN images were taken at Lowell Observatory within the same range of dates as the HCN images. We find that there is a better correlation between HCN and CN than between HCN and the optically dominant dust. If the CN in jets does have a dust source it would have to have a very low albedo and/or small particle size. The production rates are consistent with HCN being a primary parent of CN, although there are discrepancies between the HCN destruction scalelength and the CN production scalelength which we discuss.  相似文献   

12.
A program of the search for and analysis of profile variability in the spectra of bright O supergiants with a time resolution of 5–30 min is described. Preliminary results of the spectroscopic observations of the stars λ Ori, α Cam, and 19 Cep with the 1-m Special Astrophysical Observatory telescope in 2001 are presented. Line-profile variability was detected in the spectra of all the stars studied; variability in the Hα and C III λ5696 Å lines in the spectrum of λ Ori has been found for the first time. The variability amplitude is 4–5% for 19 Cep and 1–2% for α Cam and λ Ori on time scales from several hours to 3 or 4 days, and the width of the variable features reaches 2 Å (100 km s?1). We detected cyclical variations in the He II λ4686 and C III λ5696 line profiles in the spectrum of λ Ori on time scales of 1.3–1.6 days. Rapid profile variations on time scales of 3.5–7 h were found in the violet parts of the Hα and He I λ4715 line profiles in the spectrum of λ Ori A.  相似文献   

13.
The spectral reflectivity of Saturn's rings between 0.36 and 1.06 μm is derived from observations of the combined light of the Saturn system and the previously determined spectrum of the disk of Saturn. The rings are red relative to the Sun for wavelengths λ? 0.7 μm; at longer wavelengths, the spectral reflectivity declines. The amplitude of the opposition effect (anomalous brightening at very small phase angles) shows a maximum at both ends of our spectral range.  相似文献   

14.
We have used a 5.5 min time-sequence of spectra in the Fe i lines λ5576 (magnetically insensitive), λ6301.5 and λ6302.5 (magnetically sensitive) to study the association of concentrated magnetic regions and velocity in the quiet Sun. After the elimination of photospheric oscillations we found downflows of 100–300 m s ?1, displaced by about 2″ from the peaks of the magnetic field; this velocity is comparable to downflow velocity associated with the granulation and of the same order or smaller than the oscillation amplitude. Quasi-periodic time variations of the vertical component of the magnetic field up to ± 40% were also found with a period near 250 s, close to the values found for the velocity field. Finally we report a possible association of intensity maxima at the line center with peaks of the oscillation amplitude.  相似文献   

15.
The solar abundance of germanium, deduced from two relatively unblended Ge i lines, λ3039.06 and λ3269.50 is found to be log N(Ge) = 3.50 ± 0.05 on the scale log N(H) = 12.00 in good agreement with Cameron's recent solar system abundance logN(Ge) = 3.56 (on assumption log N(Si) = 7.50).  相似文献   

16.
17.
L.M. Trafton 《Icarus》1975,24(4):443-453
Detailed analysis of the R(5) manifold of Titan's 3ν3 CH4 band confirms that the column abundance of Titan's spectroscopically visible atmosphere is greater than 1.6 kmamagats. This agrees with the value estimated from the strength of Titan's 3ν3 CH4Q branch and is at least 25 times the value for the column abundance of Mars' atmosphere. Moreover, the enhanced strength of the weaker CH4 lines in Titan's spectrum relative to Saturn's spectrum suggests that CH4 constitutes a significant fraction of this bulk.Recently discovered strong, unidentified absorptions in Titan's spectrum at 1.05–1.06 μm have been compared with laboratory spectra of a number of gases including CH4, C2H4, C2H6, and C3H8 with negative results. These comparisons, however, have not excluded the possibility that these features arise from a very large quantity of CH4 or from an isotope of CH4. The fundamental transition of the responsible molecule may affect the interpretation of Titan's 8–14 μm spectrum since its wavelength may lie in this window. Comparison with Uranus' spectrum suggests that the visible abundance of this molecule in Titan's atmosphere may be much greater than in Uranus' relatively clear, deep atmosphere.Spectra of features at λ8150.7 and λ8272.7 attributed possibly to H2 have been obtained at high resolution also during the apparitions of 1971, 1972, and 1973. These are presented for comparison with the results of the 1970 apparition. The existence of the λ8150.7 feature is established definitively but further observations are needed to establish whether the λ8272.7 feature exists beyond doubt.  相似文献   

18.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

19.
The axial rotation of a star plays an important role in its evolution, the physical conditions in its atmosphere and the appearance of its spectrum.We analyzed the CCD spectra of two stars for which their projected rotational velocity differs remarkably when derived from Ca II λ3933 Å and Mg II λ4481 Å lines. We estimated the projected rotational velocity of HD182255 to be 15.5 kms?1, although in various spectra of this star the line widths correspond to values as high as 28.5 km s?1. We found the HeI λ4471.498 Å line to be shifted to longer wavelengths by 0.046 Å, thus indicating a presence of the 3He I isotope in the atmosphere of this star with the 3He : 4He ratio from 0.2 to 0.6.We also found an absorption feature at the position of the forbidden line He I λ4470.02Å. We found the lines ofMg II and CII originating from higher excited levels to be missing in the spectra of HD 182255. For HD 214923 we determined the projected rotational velocity v sin i = 165km s?1 from the profiles of the metallic lines and Ca II λ3933Å, whereas for helium lines v sin i ≈ 130km s?1 is more appropriate. Radial velocity analysis results in three long periods of ≈ 105, 34, and 15 days, and a short period of ≈ 22 hours, close to the pulsational one mentioned earlier in the literature.  相似文献   

20.
Previous work has parameterized the pitch angle dependence of the charge-exchange lifetime τ of ring current ions in terms of γ, the power of the cosine of the mirror latitude λm of the particles, such that τ(λm)τ(0) ≌cosγ λm at given L. Using the atomic hydrogen density model of Johnson and Fish, previous authors have suggested values of γ = 5 or 6. We here evaluate γ as a function of λm and L using the more recent Chamberlain density models, and show that γ = 3?4 is more appropriate over most of the pitch angle and L range. Consequently, ion distributions in the ring current decay phase are expected to become rather less anisotropic in pitch angle due to chargeexchange than previously believed. We have also investigated the use of several other simple approximate analytic forms for τ(λm)τ(0), one of which gives far better agreement with the numerical results than the cosγ λm, variation, and should hence be used in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号