首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the olivine crystal structure, cations are distributed over two inequivalent octahedral sites, M1 and M2. Kinetics of cation exchange between the two octahedral sites in (Co0.1Mg0.9)2SiO4 single crystal have been studied in the temperature range from 600 to 800°C by monitoring the time evolution of the absorbance of Co2+ ions in M1 or M2 sites using optical spectroscopy after rapid temperature jumps. It was found from such temperature-jump induced relaxation experiments that with increasing temperature the absorbance of Co2+ ions in the M1 site decreases while that in the M2 site increases. This indicates a tendency of Co2+ cations to populate the M2 site with increasing temperatures and vice versa. The experimental relaxation data can be modeled using a triple exponential equation based on theoretical analysis. Activation energies of 221 ± 4 and 213 ± 10 kJ/mol were derived from relaxation experiments on the M2 site and M1 site, respectively, for the cation exchange processes in (Co0.1Mg0.9)2SiO4 olivine. Implications for cation diffusion at low temperatures are discussed.  相似文献   

2.
The thermal expansion, structural changes and the site partitioning of Co and Mg in synthetic CoMgSiO4 olivine have been studied by in situ time-of-flight neutron powder diffraction as a function of temperature, between 25 and 1,000°C. Thermal expansion of the unit cell dimensions and volume are linear within this temperature range and give no indications of a phase transition, although the thermoelastic behaviour indicates a slight strain minimum around 700°C. Co2+ shows a strong preference for the M1 site throughout this temperature range with an oscillatory behaviour; it decreases slightly at about 300°C, climbing up to nearly its original value at around 800°C and then decreasing by about 30% at 1,000°C. This behaviour is in contrast with that of (Fe, Mg)2SiO4 olivine, in which the initial Fe2+ site preference for the M1 site switches to the M2 site beyond a cross-over temperature. The oscillatory site preference in (CoMg)-olivine as a function of temperature is reflected in the M–O polyhedral volume changes and M–O bond lengths, as well as, thermoelastic strain and atomic thermal displacement parameters. The imbalance between the increasing vibrational and decreasing configurational entropy contributions, together with covalent bonding effects rather than crystal field contributions, seem to drive the cation partitioning in (CoMg)-olivine.  相似文献   

3.
Ni, Co, and Zn are widely distributed in the Earth’s mantle as significant minor elements that may offer insights into the chemistry of melting in the mantle. To better understand the distribution of Ni2+, Co2+, and Zn2+ in the most abundant silicate phases in the transition zone and the upper mantle, we have analyzed the crystal chemistry of wadsleyite (Mg2SiO4), ringwoodite (Mg2SiO4), forsterite (Mg2SiO4), and clinoenstatite (Mg2Si2O6) synthesized at 12–20 GPa and 1200–1400 °C with 1.5–3 wt% of either NiO, CoO, or ZnO in starting materials. Single-crystal X-ray diffraction analyses demonstrate that significant amounts of Ni, Co, and Zn are incorporated in octahedral sites in wadsleyite (up to 7.1 at%), ringwoodite (up to 11.3 at%), olivine (up to 2.0 at%), and clinoenstatite (up to 3.2 at%). Crystal structure refinements indicate that crystal field stabilization energy (CFSE) controls both cation ordering and transition metal partitioning in coexisting minerals. According to electron microprobe analyses, Ni and Co partition preferentially into forsterite and wadsleyite relative to coexisting clinoenstatite. Ni strongly prefers ringwoodite over coexisting wadsleyite with \({D}_{\text{Ni}}^{\text{Rw}/\text{Wd}}\)?=?4.13. Due to decreasing metal–oxygen distances with rising pressure, crystal field effect on distribution of divalent metal ions in magnesium silicates is more critical in the transition zone relative to the upper mantle. Analyses of Ni partitioning between the major upper-mantle phases implies that Ni-rich olivine in ultramafic rocks can be indicative of near-primary magmas.  相似文献   

4.
The Co,?Mg-cation ordering in the Mg2SiO4–Co2SiO4 solid solution series as a function of the chemical composition has been studied by X-ray powder diffraction methods. The structures of nine polycrystalline samples prepared at 1200?°C and equally cooled to room temperature within 2 minutes have been refined by the Rietveld technique. The results corroborate earlier studies showing a strong preference of Co2+ for the M1 site. Considering the agreement of the powder diffraction results with those of single crystal studies allows the conclusion that the powder method is well suited for investigating the cation distribution in compounds exhibiting significant ordering effects. According to the cation distributions derived from first rapid quench experiments, the cation order of the slowly cooled samples corresponds to an estimated equilibrium temperature of 800?°C.  相似文献   

5.
Crystal field stabilization (CFS) plays a significant role in determining equilibrium phase boundaries in olivine→spinel transformations involving transition-metal cations, including Fe2+ which is a major constituent of the upper mantle. Previous calculations for Fe2SiO4 ignored pressure and temperature dependencies of crystal field stabilization enthalpies (CFSE) and the electronic configurational entropy (S CFS). We have calculated free energy changes (ΔG CFS) due to differences of crystal field splittings between Fe2SiO4 spinel and fayalite from: ΔG CFS=?ΔCFSE?TΔS CFS, as functions of P and T, for different energy splittings of t 2g orbital levels of Fe2+ in spinel. The results indicate that ΔG CFS is always negative, suggesting that CFS always promotes the olivine→spinel transition in Fe2SiO4, and expands the stability field of spinel at the expense of olivine. Because of crystal field effects, transition pressures for olivine→spinel transformations in compositions (Mg1?x Fe x )2SiO4 are lowered by approximately 50x kbar, which is equivalent to having raised the olivine→spinel boundary in the upper mantle by about 15 km.  相似文献   

6.
Diffusion coefficients of Co2+ and Ni2+ in synthetic single crystal forsterite along the c-axis were determined in the temperature ranges, 700–1200?°C and 800–1300?°C, respectively. The synthesized forsterite specimens were coated with thin evaporated films of CoO and NiO on the c-surface and annealed for diffusion experiments. The short penetration distance of diffusing ions in forsterite was measured by secondary ion mass spectrometry using the depth profile method. The diffusion coefficients of Co (700–1200?°C) and Ni (800–1300?°C) are given by: and The observed diffusion coefficient values show good linear relationships in Arrhenius plots and the activation energy values obtained agree well with the previous values, although the diffusion coefficient values observed at the high temperature end of the experimental range deviate from the previous values. These results indicate that Co and Ni diffuse in olivine with a single mechanism within the temperature range observed, possibly with an extrinsic in nature as in the case of Mg tracer diffusion observed by Chakraborty et?al. 1994 and of Fe-Mg interdiffusion by Chakraborty.  相似文献   

7.
8.
Infrared (IR) absorption spectra are presented for olivine (α) and spinel (γ) phases of A2SiO4 (A=Fe, Ni, Co) and Mg2GeO4. IR spectra of β phase (“modified spinel”) Co2SiO4 and of α Mg2SiO4 are also included. These results provide reference spectra for the identification of olivine high-pressure polymorphs. Isostructural and isochemical correlations are used to support a general interpretation of the spectra and to predict the spectrum of γ Mg2SiO4. A γ Mg2GeO4 sample equilibrated at 1,000° C shows evidence of partial inversion, but one equilibrated at 730° C does not. This suggests that partial inversion could occur in silicate spinels at elevated temperatures and pressures, however no evidence of inversion is seen in the ir spectra of the silicates in this study.  相似文献   

9.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

10.
The Tari-Misaka ultramafic complex, which is emplaced into the Paleozoic sediments and thermally metamorphosed by two younger granitic masses, is divided into four zones on the basis of the mineral assemblage. They are, in order of increasing metamorphic grade: Zone I antigorite-olivine-orthopyroxene-clinopyroxene. Zone II olivine-talc. Zone III olivine-anthophyllite. Zone IV olivine-orthopyroxene. Strongly serpentinized clinopyroxene-bearing harzburgite in Zone I is similar to ordinary Alpine-type harzburgite. In Zonne II, two kinds of olivine are recognized. One is Mg-rich olivine (Fo93 to Fo97) with opaque inclusions and is probably a recrystallization product of serpentine with talc. The other is Fe-rich olivine (Fo88 to Fo93) free of opaque inclusions and is probably a relic of the primary peridotite. Olivine in Zone III and Zone IV is also relatively Mg-rich (Fo91 to Fo95). Chromitite in Zone IV commonly has an assemblage, olivine+cordierite+Mg-Al spinel (Mg/Mg+Fe2+, more than 0.9). Enstatite is rare and coexists with less magnesian Mg-Al spinel (Mg/Mg+Fe2+, less than 0.9). Petrological and mineralogical characters of the ultramafic rocks can be well explained by thermal metamorphism of strongly serpentinized peridotite by granitic intrusion. Metamorphic zones are consistent with the experimental results in the system MgO-SiO2-H2O. The assemblage olivine+cordierite indicates that the metamorphism occurred at relatively low pressures (<3kb).  相似文献   

11.
A thermodynamic solution model is developed for minerals whose compositions lie in the two binary systems Mg2SiO4-Fe2SiO4 and Mg2Si2O6-Fe2Si2O6. The formulation makes explicit provision for nonconvergent ordering of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxenes and non-zero Gibbs energies of reciprocal ordering reactions in both olivine and orthopyroxene. The calibration is consistent with (1) constraints provided by available experimental and natural data on the Fe-Mg exchange reaction between olivine and orthopyroxene ± quartz, (2) site occupancy data on orthopyroxenes including both crystallographic refinements and Mössbauer spectroscopy, (3) enthalpy of solution data on olivines and orthopyroxenes and enthalpy of disordering data on orthopyroxene, (4) available data on the temperature and ordering dependence of the excess volume of orthopyroxene solid solutions, and (5) direct activity-composition determinations of orthopyroxene and olivine solid solutions at elevated temperatures. Our analysis suggests that the entropies of the exchange [Mg(M2)Fe(M1)Fe(M2)Mg(M1)] and reciprocal ordering reactions [Mg(M2)Mg(M1)+ Fe(M2)Fe(M1)Fe(M2)Mg(M1)+Mg(M2)Fe(M1)] cannot differ significantly (± 1 cal/K) from zero over the temperature range of calibration (400°–1300° C). Consideration of the mixing properties of olivine-orthopyroxene solid solutions places tight constraints on the standard state thermodynamic quantities describing Fe-Mg exchange reactions involving olivine, orthopyroxene, pyralspite garnets, aluminate spinels, ferrite spinels and biotite. These constraints are entirely consistent with the standard state properties for the phases-quartz,-quartz, orthoenstatite, clinoenstatite, protoenstatite, fayalite, ferrosilite and forsterite which were deduced by Berman (1988) from an independent analysis of phase equilibria and calorimetric data. In conjunction with these standard state properties, the solution model presented in this paper provides a means of evaluating an internally consistent set of Gibbs energies of mineral solid solutions in the system Mg2SiO4-Fe2SiO4-SiO2 over the temperature range 0–1300° C and pressure interval 0.001–50 kbars. As a consequence of our analysis, we find that the excess Gibbs energies associated with mixing of Fe and Mg in (Fe, Mg)2SiO4 olivines, (Fe, Mg)3Al2Si3O12 garnets, (Fe, Mg)Al2O4 and (Fe, Mg)Fe2O4 spinels, and K(Mg, Fe)3AlSi3O10(OH)2 biotites may be satisfactory described, on a macroscopic basis, with symmetric regular solution type parameters having values of 4.86±0.12 (olivine), 3.85±0.09 (garnet), 1.96±0.13 (spinel), and 3.21±0.29 kcals/gfw (biotite). Applications of the proposed solution model demonstrate the sensitivity of petrologic modeling to activity-composition relations of olivine-orthopyroxene solutions. We explore the consequences of estimating the activity of silica in melts forming in the mantle and we develop a graphical geothermometer/geobarometer for metamorphic assemblages of olivine+orthopyroxene+quartz. Quantitative evaluation of these results suggests that accurate and realistic estimates of silica activity in melts derived from mantle source regions,P-T paths of metamorphism and other intensive variables of petrologic interest await further refinements involving the addition of trace elements (Al3+ and Fe3+) to the thermodynamic formulation for orthopyroxenes.  相似文献   

12.
The Burro Mountain ultramafic complex, Monterey County, California, consists of dunites and peridotites which are partially or wholly serpentinized. Primary minerals in both rock types are olivine, enstatite, diopside, and picotite which upon alteration yield chrysotile, lizardite, brucite, magnetite, talc, tremolite, and carbonate. Electron microprobe analyses show that enstatite, En85.8 to En90.8, alters to “bastite” composed only of lizardite (5.0–12.0 weight percent FeO), whereas olivine, Fo90.8 to Fo91.6, forms lizardite+chrysotile+brucite with or without magnetite. The chrysotile ranges from 3.0 to 5.0 weight percent FeO, the brucite from 16.0 to 43.0 weight percent FeO. As Serpentinization proceeds, the alteration products are enriched in FeO relative to MgO. Serpentinization probably originates in a changing \(P_{O_2 }\)-T environment by two different reactions:
  1. (a)
    Olivine+enstatite+H2O+O2?Mg, Fe+2 chrysotile+Mg, Fe+3, Fe+2 lizardite with or without magnetite.  相似文献   

13.
The crystal structure and chemical composition of a crystal of (Mg14?x Cr x )(Si5?x Cr x )O24 (x ≈ 0.30) anhydrous Phase B (Anh-B) synthesized in the model system MgCr2O4–Mg2SiO4 at 12 GPa and 1600 °C have been investigated. The compound was found to be orthorhombic, space group Pmcb, with lattice parameters a = 5.900(1), b = 14.218(2), c = 10.029(2) Å, V = 841.3(2) Å3 and Z = 2. The structure was refined to R 1 = 0.065 using 1492 independent reflections. Chromium was found to substitute for both Mg at the M3 site (with a mean bond distance of 2.145 Å) and Si at the octahedral Si1 site (mean bond distance: 1.856 Å), according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a reduction in the volume of the M3 site and an increase in the volume of the Si-dominant octahedron with respect to the values typically observed for pure Anh-B and Fe2+-bearing Anh-B. Taking into account that Cr3+ is not expected to be Jahn–Teller active, it appears that both the Cr3+–for–Mg and Cr3+–for–Si substitutions in the Anh-B structure decrease the distortion of the octahedra. Electron microprobe analysis gave the Mg13.66(8)Si4.70(6)Cr0.62(4)O24 stoichiometry for the studied phase. The successful synthesis of this phase provides new information for the possible mineral assemblages occurring in the Earth’s deep upper mantle and shed new light on the so-called X discontinuity that has been observed at 275–345 km depth in several subcontinental and subduction zone environments.  相似文献   

14.
An experiment conducted in a 2000-ton uniaxial split-sphere apparatus (USSA-2000) utilizes large sample volume and a substantial temperature gradient to synthesize intergrowths of the olivine and spinel polymorphs of Co2SiO4. The olivine starting material consists of a finegrained fraction (<20μm) which records the stable polymorphs along the length of the sample plus large olivine grains (100–500 μm) which help decipher the mechanism of the phase transformation. At conditions near equilibrium, the olivine-spinel transformation in the large grains occurs by inward growth of a few large single crystals of spinel nucleated on the surfaces of the olivine. The overall rate of transformation is governed by the mobility of the interphase boundary, whose morphology is crystallographically controlled by the spinel. No renucleation of spinel is observed in the host olivine crystal, even in the region immediately adjacent to the olivine/spinel interface; analysis of this region with transmission electron microscopy reveals an extremely high density of dislocations induced by plastic flow accommodating the volume change associated with the phase transformation.  相似文献   

15.
Kinetic rates of Fe2+-Mg disordering in three orthopyroxenes (mean value of XFe = Fe2+/(Fe2++Mg) = 0.175,0.482,0.770 respectively) have been determined employing heating experiments and single crystal X-ray structural refinements. Disordering rate constants \((\vec K)\) (550800° C) for two pyroxenes are given by: ln \((\vec K)\) = 27.107(±5.177)?32062(±783)T?1(XFe = 0.175) ln \((\vec K)\) = 16.142(±0.057)?18227(±423)T?1(XFe = 0.770) The distribution coefficients KD (representing a steady state of disordering FeM2 + MgM1 ? FeM1 + MgM2) are given by: ln KD = 5.016(±0.223)-7033(±1473) T?1(XFe = 0.175) ln KD = 1.988(±0.122)-3809(±913)T?1(XFe = 0.770) These distribution coefficients provide the constraint of the disordering reaction on the value of the equilibrium constant for Fe2+-Mg order-disorder. Until the low temperature dependence of KD is well constrained, the calculation of cooling rates of pyroxenes and host rocks cannot be done reliably.  相似文献   

16.
Four synthetic endmember olivines (Mg,Mn, Fe,Co)2SiO4 with space group Pbnm were loaded together in one diamond cell mount. Their unit-cell parameters were determined by single crystal X-ray diffraction to 10 GPa. The linear compressibilities βa, βb, βc were 1.53, 2.90, 2.32; 1.45, 3.48, 1.98; 1.35, 3.29, 1.76; and 1.25, 2.82, 2.01×10−3 GPa−1 for Mg2SiO4, Mn2SiO4, Fe2SiO4 and Co2SiO4, respectively. The b axis is the most compressible direction in all crystals studied. Bulk modulus KT0 and its first pressure derivative were simultaneously determined for Mg2SiO4, Fe2SiO4 and Co2SiO4 crystals respectively by fitting volume data to a third order Birch-Murnaghan equation of state. They are 127(4) and 4.2(8), 136(3) and 4.1(7), and 144(2) and 4.1(5). The KT0 and could not simultaneously be determined unambiguously for Mn2SiO4. Direct comparisons of unit-cell volumes at high pressure among pairs of olivines reveal anomalous compression behavior of the Mg2SiO4 crystal regarding the bulk modulus-volume relationship. This behavior, however, could not be observed in the transition metal olivines (Mn,Fe,Co)2SiO4. The distinct electronic configurations of Mg2+ and the transition metal cations Mn2+, Fe2+, and Co2+ result in the different compression behaviors of Mg2SiO4 and (Mn,Fe,Co)2SiO4. Received: 14 April 1997 / Revised, accepted: 29 July 1997  相似文献   

17.
The products of the transformation of natural (Mg0.83Fe0.17)2SiO4 olivine have been prepared at various high pressures (between 25 GPa and 90 GPa), and high temperature in a laser-heated diamond-anvil cell (DAC). Studies of the high-pressure phases have been made by transmission electron microscopy (TEM), and X-ray microanalysis. The olivine/spinel boundaries exhibit all the characteristics of a diffusionless shear transition, having a finely sheared structure and a constant orientation relationship between the close-packed planes of the two structures ((100)ol∥(111)sp). The TEM observations of zones where olivine (or spinel) transforms into post-spinel phases show that the transformation possesses the features of an eutectoïdal decomposition, leading to a lamellar intergrowth of magnesiowüstite (Mg,Fe)O and perovskite (Mg,Fe)SiO3. With increasing temperature and/or decreasing pressure, the grain size of the high-pressure phases increases and obeys an Arrhenius law with an activation volume equal to zero. (Mg,Fe)O grains exhibit a very high density of dislocations (higher than 1011cm?2), whereas (Mg,Fe)SiO3 grains exhibit no dislocations but systematic twinning. The composition plane of the twins is (112) of the GdFeO3-type perovskite, corresponding to the {110} plane of the cubic lattice of ideal perovskite.  相似文献   

18.
Raman microprobe (RMP) spectra were produced for each of the olivine and spinel structured phases of Mg2GeO4 and (Mg, Fe)2SiO4. The assembled data show that bands due to the tetrahedra in silicate and germanate olivines shift in a way that indicates a dominant mass effect. This correspondence is difficult to make in spinels due to differences in structural type. Differences in Fe/Mg content of olivine shift the tetrahedral vibration bands only slightly, but their linear shifts could be used to indicate the composition of the phase.  相似文献   

19.
Crystals of the olivine minerals, tephroite (Mn2SiO4) and fayalite (Fe2SiO4) containing manganese(II) and iron (II and trace of III), respectively, were synthesized. Glasses were prepared from these crystalline materials by a splat-quench technique. Measurement of electron paramagnetic resonance (EPR) of all these powdered samples at room temperature show that the g-factors of Mn2+ in both glassy and crystalline environments (geff = 2.004) are the same, although the EPR linewidths (for glass, ΔHpp = 200 G; for crystals ΔHpp = 287 G) suggest less clustering of paramagnetic Mn2+ ions in the glass. Mn2+ probably occupies a distorted octahedral site in the tephroite crystal structure, although a four-fold coordination is suggested from other spectroscopic investigation on this glass. The EPR parameters of Fe3+ in synthetic fayalite glass (geff = 2.01 and 6.00; ΔHpp=150 and 1375 G, respectively, for the high and low field resonances) and powdered crystals (geff = 3.31 and ΔHpp = 900 G) indicated that Fe3+ ion in the crystals, is probably located in a distorted tetragonal site M2 and an axial environment has been proposed in the glassy system.  相似文献   

20.
Annealing experiments on natural olivine (Mg1-x Fe x )2SiO4 (with x≈0.11) crystals (San Carlos, Arizona, spinel-lherzolite context) have been performed between T=1,100° C and 1,500° C for oxygen partial pressures pO2=10?3 to 10?13 bar and times of 1 to 140 h in CO/CO2 or H2/H2O gas mixtures. Even specimens annealed within the T-pO2 theoretical stability field (TSF) calculated for stoichiometric olivine (Nitsan 1974) show systematic alterations developed within the first few microns of the surface of the crystals. Pyroxene crystals or melt form on the original olivine surface even at T=1,100° C, with preference of pyroxene when T<1,350° C and SiO2-rich glass if T>1,350° C. This glass (rhyolite-like) can concentrate calcium from the starting olivine, and aluminum when Cr-Al spinels are present as inclusions. These observations are in contradiction with the TSF. They are obviously due to the presence of platinum used as a container of our samples, even if the contact between olivine and platinum is very weak. Rapid surficial diffusion of iron toward platinum (or via the gas phase) induces a Fe-depleted surface. According to the TSF, this more forsteritic surface should have a wider pO2 range of stability. This is not the case, just because this situation is largely out of equilibrium. This iron loss induces a departure from cationic stoichiometry: (Mg, Fe)2(1?δ), SiO4 with δ small and positive. We extended the model that Nakamura and Schmalzried (1983) (N.S.) developed for fayalite (x=1) to our natural olivine composition, under the assumption that the majority defects are magnesium vacancies, Fe3+ occupying octahedral and tetrahedral sites, and the more complex neutral defect corresponding to Coulombic attraction between neighboring Fe3+ ions. We have recalculated the olivine stability field in pO2 vs. δ space at T=1,300° C using this model for x≈0.1 (its extreme limit of validity) and conclude that olivine is stable only in a very narrow range in pO2 which depends on δ. The calculation shows also that when olivine has nearly cationic stoichiometry (δ=0) as we believe for our starting material, the pO2 range of stability is narrower than indicated by the TSF. In particular, it explains why Fe precipitates from the olivine (δ=0) (in absence of any other precipitation of SiO2-rich phases) between 10?11 and 10?13 bar at 1,300° C; this was not predicted by the TSF. Magnetite or iron precipitates also coexist with SiO2-rich exsolutions or pyroxene when pO2 is close to the upper or lower boundaries of the TSF, respectively. The N.S. model may have important implications for the interpretation of the existence of partial melting and/or the low-viscosity/low velocity zone in the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号