首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Most of the Al3+ entering the pyroxenes does so by substituting for tetrahedral Si4+. This creates a charge imbalance that requires the simultaneous entry of Cr3+, Ti4+, Fe3+ or Al3+ into octahedral sites. Cr3+, because of its high crystal field stabilisation energy (CFSE), is the most important of these elements to enter the early-formed pyrosenes but it is replaced by Ti4+ later in fractionation when the Cr3+ content of the melt becomes depleted. The dependence of Cr3+ and Ti4+ on charge balance controls their partition between coexisting pyroxenes and olivines. Ca-rich pyroxene which contains more Al3+ than Ca-poor pyroxene also has more Ti4+ and Cr3+ whereas olivine, which contains negligible Al3+, has low Cr3+ and Ti4+. The Al3+ content of pyroxenes is influenced by changes in P, T, \(a_{{\text{SiO}}_{\text{2}} }\) and \(a_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} }\) of the magma and by the nature of the ion providing charge balance in the octahedral site. Of these \(a_{{\text{SiO}}_{\text{2}} }\) is dominant and variations in the Al3+ content of the Jimberlana pyroxenes correspond closely with the expected changes in the \(a_{{\text{SiO}}_{\text{2}} }\) of the melt. The substitution of divalent ions, such as Mn2+ and Ni2+, in the pyroxene lattice is by replacement of Fe2+ or Mg2+ in the octahedral M 3 and M 2 sites and is therefore independent of charge balance. If there are no size restrictions, the principal factor to be considered is the CFSE the ion receives in octahedral co-ordination. Ni2+, which receives a high CFSE, partitions strongly between the early-formed pyroxenes and olivines and therefore becomes depleted in the magma with fractionation. Conversely Mn2+, which receives zero CFSE, concentrates in the magma with fractionation and becomes a more important substitute in the later-formed pyroxenes. Its geochemical behaviour is controlled by its size. The narrow miscibility gap of the Jimberlana pyroxenes and the high En content of the Ca-poor pyroxenes at the bronzite pigeonite changeover suggest that these pyroxenes crystallised at a higher temperature than pyroxenes of comparable composition from other intrusions.  相似文献   

2.
This paper presents the point-defect thermodynamics for fayalite and olivine solid solutions (Fe x Mg1?x )2SiO4. By means of thermogravimetry, the metal-to-oxygen ratio of these silicates has been determined as a function of oxygen potential, compositionx and temperature. Experiments were performed in the range of 1,000° C≦T≦1,280° C and 0.2≦x≦1.0. It is found that V Me , Fe Me · and the associate {Fe′ Si Fe Me · } are the majority defects. With this knowledge it is possible to calculate the nonstoichiometry at given temperature as a function of \(p_{O_2 } \) and \(a_{SiO_2 } \) . The cation vacancy concentration shows a \(p_{O_2 }^{1/5} \) -dependence (forx≧0.2) and increases at givenT and \(p_{O_2 } \) almost exponentially with compositionx. In the composition range studied here, the silicates show an oxygen excess, and FeO is more soluble in the olivine than SiO2.  相似文献   

3.
Theoretical and practical considerations are combined to place limits on the iron content of an FePt alloy that is in equilibrium with silicate melt, olivine and a gas phase of known \(f_{{\text{O}}_{\text{2}} }\) . Equilibrium constants are calculated for the reactions: (1) $$2{\text{Fe}}^{\text{o}} + {\text{SiO}}_{\text{2}} + {\text{O}}_{\text{2}} \rightleftharpoons {\text{Fe}}_{\text{2}} {\text{SiO}}_{\text{4}}$$ (2) $${\text{Fe}}^{\text{o}} + \frac{1}{2}{\text{O}}_{\text{2}} \rightleftharpoons {\text{FeO}}$$ . These equilibria may be used to choose an appropriate iron activity for the FePt alloy of an experiment. The temperature dependence of the equilibrium constants is calculated from experimental data. The Gibbs free energy of reaction (1) obtained using thermochemical data is in close agreement with ΔGrxn calculated from the experimental data. Reaction (1) has the advantage that it is independent of the Fe2+/Fe3+ ratio of the melt, but is limited to applications where olivine is a crystallizing phase and requires a formulation for \(a_{{\text{SiO}}_{\text{2}} }^{{\text{liq}}}\) . Reaction (2) uses an empirical approximation for the FeO/Fe2O3 ratio of the liquid, and is independent of olivine saturation. However, it requires a formulation for a FeO liq . Either equilibrium constant may be used to calculate the appropriate FePt alloy in equilibrium with a silicate melt. If experiments are conducted at an \(f_{{\text{O}}_{\text{2}} }\) parallel that of a buffer assemblage, a small range of FePt alloys may be used over a large temperature interval. For example, an alloy containing from 6 % to 9 % Fe by weight is in equilibrium with olivine-saturated tholeiites and komatiites at the quartzfayalite-magnetite buffer over the temperature interval 1,400° C to 1,100° C. Lunar basalt liquids in equilibrium with olivine at 1/2 log unit below the iron-wüstite buffer require an FePt alloy that contains 30–50 wt. % iron over a similar temperature interval.  相似文献   

4.
Five different refraction formulas were applied to SiO2 polymorphs in order to determine the most suitable refractive index-density relation. 13 SiO2 polymorphs with topological different tetrahedral frameworks are used in this study including eight new low density SiO2 polymorphs — so called “guest free porosils”. These SiO2 polymorphs cover a density range from 1.76 to 2.92 g/cm3. The mean refractive indices (ovn) of the porosils have been determined by the immersion method, the densities (ρ) were calculated from the unit cell parameters. Assuming the polarizability (α) of all SiO2 polymorphs to be constant the general refractivity formula $$\{ 2\overline {11} 0\} \langle 0001\rangle $$ turned out to be the most suitable for SiO2 polymorphs. Regression analysis yields an electronic overlap parameter b=1.2(1).  相似文献   

5.
In the lattice energy expression of forsterite, based on a Born-Mayer (electrostatic+repulsive+dispersive) potential, the oxygen charge z o, the hardness parameter ρ and the repulsive radii r Mg and r Si appear as unknown parameters. These were determined by calculating the first and second partial derivatives of the energy with respect to the cell edges, and equalizing them to quantities related to the crystal elastic constants; the overdetermined system of equations was solved numerically, minimizing the root-mean-square deviation. To test the results obtained, the SiO 4 4? ion was assumed to move in the unit-cell, and the least-energy configuration was sought and compared with the experimental one. By combining the two methods, the optimum set of parameters was: z o=?1.34, ρ=0.27 Å, r Mg=0.72 Å, r Si=0.64 Å. The values ?8565.12 and ?8927.28 kJ mol?1 were obtained, respectively, for the lattice energy E Land for its ionic component E L 0 ,which accounts for interactions between Mg2+ and SiO 4 4? ions only. The charge distribution calculated on the SiO 4 4? ion was discussed and compared with other results. Using appropriate thermochemical cycles, the formation enthalpy and the binding energy of SiO 4 4? were estimated to be: ΔH f(SiO 4 4? )=2117.6 and E(SiO 4 4? )=708.6 kJ mol?1, respectively.  相似文献   

6.
A number of experimental CO2 solubility data for silicate and aluminosilicate melts at a variety of P- T conditions are consistent with solution of CO2 in the melt by polymer condensation reactions such as SiO 4(m 4? +CO2(v)+Si n O 3n+1(m) (2n+1) ?Si n+1O 3n+4(m) (2n+4)? +CO 3(m )2? . For various metalsilicate systems the relative solubility of CO2 should depend markedly on the relative Gibbs free change of reaction. Experimental solubility data for the systems Li2O-SiO2, Na2O-SiO2, K2O-SiO2, CaO-SiO2, MgO-SiO2 and other aluminosilicate melts are in complete accord with predictions based on Gibbs Free energies of model polycondesation reactions. A rigorous thermodynamic treatment of published P- T-wt.% CO2 solubility data for a number of mineral and natural melts suggests that for the reaction CO2(m) ? CO2(v)
  1. CO2-melt mixing may be considered ideal (i.e., { \(a_{{\text{CO}}_{\text{2}} }^m = X_{{\text{CO}}_{\text{2}} }^m \) );
  2. \(\bar V_{{\text{CO}}_{\text{2}} }^m \) , the partial molal volume of CO2 in the melt, is approximately equal to 30 cm3 mole?1 and independent of P and T;
  3. Δ C p 0 is approximately equal to zero in the T range 1,400° to 1,650 °C and
  4. enthalpies and entropies of the dissolution reaction depend on the ratio of network modifiers to network builders in the melt. Analytic expressions which relate the CO2 content of a melt to P, T, and \(f_{{\text{CO}}_{\text{2}} } \) for andesite, tholeiite and olivine melilite melts of the form
$$\ln X_{{\text{CO}}_{\text{2}} }^m = \ln f_{{\text{CO}}_{\text{2}} } - \frac{A}{T} - B - \frac{C}{T}(P - 1)$$ have been determined. Regression parameters are (A, B, C): andesite (3.419, 11.164, 0.408), tholeiite (14.040, 5.440,0.393), melilite (9.226, 7.860, 0.352). The solubility equations are believed to be accurate in the range 3<P<30 kbar and 1,100°<T<1,650 °C. A series of CO2 isopleth diagrams for a wide range of T and P are drawn for andesitic, tholeiitic and alkalic melts.  相似文献   

7.
The P-T path of magma associated with the 1944 Vesuvius eruption has been outlined on the basis of probe mineralogy and the relationships between the crystallising phases. Equilibrium P-T values, obtained from the reactions:
  1. CaMgSi2O6(liq) = CaMgSi2O6(cpx)
  2. NaAlSi3O8 (liq) = NaAlSi3O8 (plag)
  3. CaAl2Si2O8 (plag)=CaAl2SiO6(cpx)+SiO2(liq) have been established for three intracrustal crystallisation stages: I) 8.0 kbar and 1255 °C; II) 4.0 kbar and 1178 °C; III) 0.5 kbar and 1105 °C.
The H2O content in the magma has been estimated from an experimental calibration of \(a_{^{CaMgSi_2 O_6 } }^{liq}\) as a function of \(X_{H_2 O}^{liq}\) at P tot = 2 kbar. The estimated water contents of the magma for the three stages, I) 0.7%; II) 0.9%; III) 1.1%, are consistent with the pattern of activity of the 1944 Vesuvius eruption and with the relationship between the lavas. The shallow depth of H2O-saturation of the magma, 0.24 kbar at 1100 °C, is consistent with the eruption sequence of lava flows followed by lava fountain activity.  相似文献   

8.
9.
The equilibrium position of the reaction $$\begin{gathered} 1.5 KAlSi_3 O_8 + HCl = 0.5 KAl_3 Si_3 O_{10} (OH)_2 \hfill \\ + 3SiO_2 + KCl \hfill \\ \end{gathered} $$ has been located at 1 and 2 kb pressure and temperatures between 600° and 670° C using the Ag-AgCl buffer. These data can be combined with information on the dissociation of KC1, HC1 and H2O to determine species abundances in supercritical aqueous fluids in equilibrium with muscovite — K-feldspar — quartz assemblages. Chloride species become increasingly associated with increasingT, increasing total molality, (m tot or \(m_{Cl_{tot} } \) ), and decreasing \(P_{H_2 O} \) . Master variable diagrams indicate that the pH of the solutions may vary from near neutral to quite acid. Published data on the paragonite-albite-quartz reaction and exchange reactions involving feldspars and micas were included to calculate speciation in mica-feldspar-NaCl-KCl-HCl-H2O fluids at 2kb pressure and temperatures between 300° and 600° C. The data are not accurate enough to distinguish different feldspar structural states. Concentration gradients were calculated for individual species between K-feldspar+quartz, muscovite+quartz and andalusite+quartz assemblages at 500° C, 2 kb. Assuming that the proton diffuses most rapidly and that there are no [H+] gradients, the molality of the solution must vary 30-fold, with feldspar+quartz at the more concentrated side. The data on mica-feldspar-chloride equilibria are used to interpret the spacial distribution of micas, feldspar and quartz in microfolds. This distribution can be accounted for by pressure solution, due to the fact that non-hydrostatic pressure affects congruently dissolving minerals, auch as quartz, differently from minerals which dissolve incongruently, such as micas and feldspars. We postulate, that during folding at constant \(P_{H_2 O} \) ,T and \(m_{Cl - } \) , gradients in KC1 and SiO2 are created by stress differences between hinge and limb of a microfold, such that both migrate to the hinge area where quartz precipitates and muscovite is converted to K-felspar, thus accounting for the observed mineral distribution.  相似文献   

10.
Electrical conductivities of Ni2SiO4, Fe2SiO4, and MgSiO3 were measured on synthetic powders in the temperature range 340° to 1,100° C and at pressures up to 20 kbars. For ternary compounds such as olivines and pyroxenes the control of two further variables, like the chemical activities of two components are needed, besides temperature and pressure. The activities of the corresponding binary oxides were controlled by equilibrating the samples with their neighbour-phases. Control of the oxygen partial pressure was achieved by buffer techniques. From the slopes of the lg σ vs. 1/T lines the activation energies were calculated for 10 kbar: 0.56 eV and 2.7 eV for Ni2SiO4 in equilibrium with SiO2 and Ni/NiO-buffer for the temperature range 500°–800°C and 800°–1,000°C resp. 0.52 eV for Fe2SiO4 in equilibrium with SiO2 and metallic iron, and 0.38 eV in equilibrium with SiO2 and magnetite; 1.11 eV for MgSiO3 in equilibrium with SiO2, and 1.25 eV in equilibrium with Mg2SiO4.  相似文献   

11.
A thermochemical data base for phases in the system Fe-Mg-Si-O at high pressures up to 300 kbar is established by supplementing the available calorimetric data with data calculated from experimental high pressure synthesis studies. Phases included in the data base are the SiO2 polymorphs, rock salt solid solutions (Fe-Mg-O), Fe2O3, Fe3O4, (Mg, Fe)2SiO4 olivine, spinel, modified spinel and (Mg, Fe)SiO3 perovskite and pyroxene. Phases not included are the MgSiO3-ilmenite and -garnet. Fe-Mg solution properties of olivine, spinel, perovskite and wustite (rock salt) are estimated. The wüstite solid solution has been modeled as a nonideal solution of three end members; FeO, FeO1.5 and MgO. The new data base is made consistent with most of the available information on high pressure phase studies. The data base is useful in generating phase diagrams of various different compositions for the purpose of planning new experiments and analysing existing phase synthesis data.  相似文献   

12.
X-ray structure refinements of Ni2SiO4 and Fe2SiO4 spinels have been made as a function of temperature and heating duration by intensity measurements at high temperatures and room pressure. The lattice parameters of Ni2SiO4 spinel linearly increased with temperature up to 1,000° C. However, Fe2SiO4 spinel exhibited a nonlinear thermal expansion and was converted to a polycrystalline mixture of spinel and olivine by heating of less than one-hour at 800° C. The ratios between the octahedral and tetrahedral bond lengths D oct/D tetr and between the shared and unshared edge distances (O-O)sh/(O-O)unsh in Fe2SiO4 spinel were both much larger than those in Ni2SiO4. These ratios increase with temperature. The Fe2SiO4 spinel more readily approached a activation state which facilitated the transition to the olivine structure than the Ni2SiO4 spinel. The lattice parameter of Ni2SiO4 spinel decreased with heating period at constant temperatures of 700° C and 800° C. The parameter of the quenched sample after heating for 52 h at 700° C was smaller than that of the nonheated sample. The refinements of the site occupancies at each heating duration indicated an increase in the cation deficiency in both tetrahedral and octahedral sites. Electron microprobe analysis, however, proved no significant difference in the chemical compositions between the quenched and nonheated samples. Si and Ni atoms displaced from normally occupied spinel lattice sites are assumed to settle in vacant sites defined by the cubic close packed oxygen sublattice in a manner which preserves the electric neutrality of the bulk crystal.  相似文献   

13.
Infrared absorption spectra of the high-pressure polymorphs β-Mg2SiO4 and β-Co2SiO4 have been measured between 0 and 27 GPa at room temperature. Grüneisen parameters determined for 11 modes of β-Mg2SiO4 (frequencies of 300 to 1,050 cm?1) and 5 modes of β-Co2SiO4 (490 to 1,050 cm?1) range between 0.8 and 1.9. Averaging the mid-infrared spectroscopic data for β-Mg2SiO4 yields an average Grüneisen parameter of 1.3 (±0.1), in good agreement with the high-temperature thermodynamic value of 1.35. Similarly, we find a value of 1.05 (±0.2) for the average spectroscopic Grüneisen parameter of β-Co2SiO4.  相似文献   

14.
Experiments on the join Al2SiO5-“Mn2SiO5” of the system Al2O3-SiO2-MnO-MnO2 in the pressure/temperature range 10–20 kb/900–1050° C with gem quality andalusite, Mn2O3, and high purity SiO2 as starting materials and using /O2-buffer techniques to preserve the Mn3+ oxidation state had following results: At 20 kb/1000°C orange-yellow kyanite mixed crystals are formed. The kyanite solid solubility is limited at about (Al1.88Mn 0.12 3+ )SiO5 and, thus, equals approximately that on the join Al2SiO5-“Fe2SiO5” (Langer and Frentrup, 1973) indicating that there is no Jahn-Teller stabilisation of Mn3+ in the kyanite matrix. 5 mole % substitution causes the kyanite lattice constants a o, b o, c o, and V o to increase by 0.015, 0.009, 0.014 Å, and 1.6 Å3, resp., while α, β, γ, remain unchanged. Between 10 and 18 kb/900°C, Mn3+-substituted, strongly pleochroitic (emeraldgreen-yellow) andalusitess (viridine) was obtained. At 15 kb/900°C, the viridine compositional range is about (Al1.86Mn 0.14 3+ )SiO5-(Al1.56Mn 0,44 3+ )SiO5. Thus, Al→Mn3+ substitutional degrees are appreciably higher in andalusite than in kyanite, proving a strong Jahn-Teller effect of Mn3+ in the andalusite structure, which stabilises this structure type at the expense of kyanite and sillimanite and, thus, enlarges its PT-stability range extremely. 17 mole % substitution cause the andalusite constants a o, b o, c o, and V o to increase by 0.118, 0.029, 0.047 Å and 9.4 Å3, resp. At “Mn2SiO5”-contents smaller than about 7 mole %, viridine coexists with Mn-poor kyanite. At “Mn2SiO5”-concentrations higher than the maximum kyanite or viridine miscibility, braunite (tetragonal, ideal formula Mn2+Mn3+[O8/Si04]), pyrolusite and SiO2 were found to coexist with the Mn3+-saturated ky ss or and ss, respectively. In both cases, braunites were Al-substituted (about 1 Al for 1 Mn3+). Pure synthetic braunites had the lattice constants a o 9.425, c o, 18.700 Å, V o 1661.1 Å3 (ideal compn.) and a o 9.374, c o 18.593 Å3, V o 1633.6 Å3 (1 Al for 1 Mn3+). Stable coexistence of the Mn2+-bearing phase braunite with the Mn4+-bearing phase pyrolusite was proved by runs in the limiting system MnO-MnO2-SiO2.  相似文献   

15.
Liquidus and subliquidus phase relations of a leucite-lamproite (wolgidite) from the West Kimberley area, Australia have been studied experimentally under the volatile conditions of 3.22 wt.% H2O ( \(X_{CO_2 }\) =0.11) and 13.0 wt.% H2O ( \(X_{CO_2 }\) =0.03) between 10 to 40 kbar. Under these conditions, liquids are vapour undersaturated. In experiments with 13.0 wt.% H2O, olivine is the liquidus phase up to 24 kbar and orthopyroxene above 24 kbar. Phlogopite and rutile occur close to the liquidus above 16 kbar. Crystallization temperatures of clinopyroxenes are 50–120° C below the liquidus. Based on these results, wolgidite magma is unlikely to be a partial melt of a garnet- or spinel-lherzolite mantle but could be derived from phlogopite+rutile±olivine±or-thopyroxene assemblages occurring as metasomatized mantle.  相似文献   

16.
Infrared (IR) absorption spectra are presented for olivine (α) and spinel (γ) phases of A2SiO4 (A=Fe, Ni, Co) and Mg2GeO4. IR spectra of β phase (“modified spinel”) Co2SiO4 and of α Mg2SiO4 are also included. These results provide reference spectra for the identification of olivine high-pressure polymorphs. Isostructural and isochemical correlations are used to support a general interpretation of the spectra and to predict the spectrum of γ Mg2SiO4. A γ Mg2GeO4 sample equilibrated at 1,000° C shows evidence of partial inversion, but one equilibrated at 730° C does not. This suggests that partial inversion could occur in silicate spinels at elevated temperatures and pressures, however no evidence of inversion is seen in the ir spectra of the silicates in this study.  相似文献   

17.
Subsolidus phase relations on the join CaMgSi2O6-CaFe3+ AlSiO6-CaTiAl2O6 were studied by the ordinary quenching method at \(f_{O_2 } = 10^{ - 11} \) atm and 1,100°C. Crystalline phases encountered are clinopyroxeness (ss:solid solution) (Cpxss), melilite (Mel), perovskite (Pv), spinelss (Spss), magnetitess (Mtss) and anorthite (An). There is no Cpxss single phase field, and the following assemblages were found; Cpxss+Mel, Cpxss+Mel+Spss, Cpxss+Mel+Pv, Cpxss+Mel+Spss+Pv, Cpxss+Pv+Spss+An, Spss+Pv+Mel+An+Cpxss, Mel+Mtss+An+Spss+Cpxss+liquid and Mel+Mtss+An+Spss+Cpxss+Pv. Mössbauer spectral study revealed that Cpxss contains both Fe2+ and Fe3+ in the octahedral site, and it was confirmed that the CaFe3+ AlSiO6 content in the Cpxss at low \(f_{O_2 } \) is considerably less than that in the Cpxss crystallized in air, whereas the CaFe2+Si2O6 component increases. The maximum solubility of CaTlAl2O6 component in the Cpxss at low \(f_{O_2 } \) is higher than that in air. The decrease of CaFe3+ AlSiO6 in the Cpxss at low \(f_{O_2 } \) may cause increase of CaTial2O6 in the Cpxss.  相似文献   

18.
Crystal field stabilization (CFS) plays a significant role in determining equilibrium phase boundaries in olivine→spinel transformations involving transition-metal cations, including Fe2+ which is a major constituent of the upper mantle. Previous calculations for Fe2SiO4 ignored pressure and temperature dependencies of crystal field stabilization enthalpies (CFSE) and the electronic configurational entropy (S CFS). We have calculated free energy changes (ΔG CFS) due to differences of crystal field splittings between Fe2SiO4 spinel and fayalite from: ΔG CFS=?ΔCFSE?TΔS CFS, as functions of P and T, for different energy splittings of t 2g orbital levels of Fe2+ in spinel. The results indicate that ΔG CFS is always negative, suggesting that CFS always promotes the olivine→spinel transition in Fe2SiO4, and expands the stability field of spinel at the expense of olivine. Because of crystal field effects, transition pressures for olivine→spinel transformations in compositions (Mg1?x Fe x )2SiO4 are lowered by approximately 50x kbar, which is equivalent to having raised the olivine→spinel boundary in the upper mantle by about 15 km.  相似文献   

19.
Experimental results show that skarns can—800°C and 500–1,000 bars. Starting materials include intermediate-acidic igneous rocks, volcanic rocks, metamorphic rocks, carbonates of various purities and chemical reagents of analytical purity-grade. Experimental media are: NaCl, NaCl+CaCl2, NaCl+CaCl2+MgCl2, Na2CO3 and Na2SiO3 solutions. Experimental results show that skarns can be formed under wide physico-chemical conditions:T=400°–800°C,P=500–1,000 bars,pH=4–11, and \(f_{O_2 } = 10^{ - 23} - 10^{ - 11} \) bar. The mineralogy of skarns and the chemical compositions of skarn minerals are generally controlled by the combined factors: the chemical composition of the original rocks, pH values, redox conditions, temperatures and pressures. Isomorphous substitution may have agreat effect on the temperature of formation andfo 2 of some major skarn minerals. It is found that skarnization occurs preferentially in NaCl and NaCl+CaCl2 solutions and subortinately in MaCO3 and Na2SiO3 soiutions.  相似文献   

20.
The Si, Al LII, III and OKα emission and quantum yield spectra were obtained for 24 silicates. It was found that in minerals of a homogeneous anion composition the Si LII, III line has double-humped structure, and when in addition to SiO 4 4? ions of other composition (BeO 4 6? , AlO 4 5? etc.) are present it has triple-humped structure. The process of crystal-glass transition was studied by X-ray spectroscopy. The result is that in spite of the original form of the Si LII, III line of the mineral this line changes its structure in glass and exhibits a typical double-humped structure. The CNDO/2 approach was used to calculate the electronic structure of basic structural groups of silicates from SiO 4 4? to Si5O 16 12? by replacing one or two of the Si atoms by Be, B, Al and P. A qualitative interpretation of the X-ray spectra is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号