首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contemporary horizontal movements and deformations in the central and southern parts of the Baikal depression are analyzed, and their relationship with contemporary seismicity is studied. Based on the long-term measurements by the Baikal geodynamical GPS monitoring network, the refined estimate is obtained for the velocity of the divergence of the Siberian and Transbaikalian blocks, which is found to occur in the southeastward direction (130°) at 3.4 ± 0.7 mm per annum. This agrees with the parameters of the long-term extension component estimated from the geological data and with the direction of extension determined from the seismic data. The distribution of the displacement velocity across the strike of the rift, which gradually increases from one block to another, suggests a nonrigid behavior of the continental lithospheric plates at the divergent boundary. About 30% (1.0–1.5 mm per annum) of the total increase in the velocity is accommodated by the Baikal Basin. The strain rate within the trough reaches 3.1 × 10?8 yr?1 and decreases on either side across the structure. The character of distribution of the horizontal displacement velocities on the Baikal divergent boundary between the Eurasian and Amurian plates favors the model of passive rifting. The zones of highly contrasting topography and increased seismicity are localized within the area of contemporary deformations, and the seismic moment release rate directly depends on the strain rate. Here, the rate of the seismic moment release rate makes up a few percent of the geodetic moment accumulation rate calculated by the approach suggested by Anderson (1979). Based on the coherence between the graphs of the rates of geodetic moment accumulation and seismic moment release rate by the earthquakes with M ≥ 5.0 during the historical and instrumental observation periods, the contemporary seismic hazard for the South Baikal Basin could be assessed at a level of seismic event with M = 7.5–7.6.  相似文献   

2.
Seismicity and Casing Failures Due to Steam Stimulation in Oil Sands   总被引:1,自引:0,他引:1  
—This paper describes observations of seismicity and casing failures associated with steam stimulation operations at Imperial Oil Ltd.’s Cold Lake oil field in Alberta, Canada. A total of 11 oil-producing pads were monitored over a 1–2 year period using 3-component geophones cemented at depths ranging from 160 m to 400 m and data acquisition systems with a flat frequency response up to 1.5 kHz. Most of the seismicity was detected during the steaming operations and was located in the formation overlying the oil-bearing layer. Some activity was observed in the shales above, however, the reservoir itself showed almost no evidence of seismicity. The estimated seismic moment of the observed events was in the range 105–107 N·m (?2.7 < M < ?1.3). According to a theoretical model (Talebi et al., 1998) and in situ observations, the seismic source corresponding to casing failure events should be well described by a dipole registering seismic moment in the order of 2 · 106 N·m. Seismic signals of a total of four observed casing failures were analyzed. The partial failures produced seismic moments slightly lower than this value while total failures were stronger by about one order of magnitude. The use of the SV/SH amplitude ratio, in conjunction with accurate source locations, provided a robust technique for the detection of casing failures.  相似文献   

3.
We investigate the scaling relationships among earthquake source parameters using more than 300 good quality broad band seismograms from 30 small earthquakes in the Kumaon Himalaya from the spectral analysis of P and S waves. The average ratio of P/S wave corner frequency is found to be 1.13, which is suggestive of shift in the corner frequency. The estimated seismic moment range from 1.6?×?1013–5.8?×?1015 N?m, while the stress drop varies from 0.6 to 16 bars with 80 % of the events below 10 bars. An analysis of stress drop and apparent stress drop indicates the partial stress drop mechanism in the region. The source radii are between 0.17 and 0.88 km. The total seismic energy varies from 1.79?×?108 to 7.30?×?1011 J. We also observe the variation in seismic energy for a given seismic moment. The scaling relation between the seismic moment and stress drop suggests the breakdown of constant stress drop scaling for the range of seismic moments obtained here for the region. This shows the anomalous behavior of small earthquakes in the region. The study indicates that the stress drop is the dominant scaling factor for the moments studied here.  相似文献   

4.
High energy release during seismic events induced by mining operation is one of the major dangers perturbing production in underground mines. In this work, temporal changes of seismic event parameters for one of the Rudna Mine (Poland) panels are investigated. The study aim was to find whether the temporal clustering of smaller events in different parameters can be observed before and after the high energy events (Ml?≥?3) in the mining panel. The method chosen for analysis was the study of temporal variation of fractal dimension of the seismic events parameter sets composed from: the interevent epicentral distance (dr), logarithm of seismic energy (lE), and interevent energy coefficient (dlE), which is the absolute difference between logarithms of energy of two consecutive events. Temporal variations study was performed in equivalent dimension (ED) space. The transformation of the seismic source parameters into ED space allowed to estimate and compare the temporal changes of the fractal dimension of different parameter spaces using the same method—correlation fractal dimension, and then easily compare the obtained temporal changes of fractal dimension of different parameter sets. The effect of grouping is expressed by decrease of fractal dimension, which is connected with the similarity of events parameter values. The temporal changes of the fractal dimension of seismicity before the strong induced events would indicate some initiation phase of the process leading to the high energy release. In the case of the studied Rudna Mine panel, the temporal behavior of the fractal dimension values in different parameter spaces before seismic events showed significant changes before three out of four events with CLVD dominant source mechanisms.  相似文献   

5.
This paper summarizes the available geological and geophysical material for faults as regards their role in the seismic process. The entirety of the geological and geophysical evidence is used to reveal hidden faults, which are important in influencing the spatial distribution of earthquakes, and to produce a map of the major earthquake-generating faults and lineaments in the Russian northeast. As well as the occurrence of earthquakes at known faults that have surface expression, we find that seismicity tends to occur at the hidden faults and lineaments we have identified, as well as at intersections of faults. We made a quantitative assessment of the relationship of seismicity to tectonic fragmentation of the crust, correlating the density and discordance measure for faults to indicators of seismic activity (rate and energy release of earthquakes per unit area) for the southeast flank of the Okhotsk-Lena seismic region. The results obtained in this study revealed some features in the spatial distribution of earthquakes occurring on land in the Okhotsk-Lena seismic region: the maximum level of seismic activity occurs in areas with moderate values of the discordance measure for faults (12 < ‖D‖ ≤ 18) as identified from gravity data and in zones of increased horizontal gradients of the lines of equal discordance. At these locations, the greatest probability of earthquake occurrence for events of energy class K ≥ 12 corresponds to moderate values of the density of faults visible at the surface (0.12 < τ ≤ 0.16 km?1).  相似文献   

6.
This paper presents a set of seismicity parameters that are estimated at the Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences based on the regional catalog data with the purpose of routine monitoring of the current seismic situation in the region. The focus is on the identification of changes in the seismic regime (seismic quiescences and seismicity increases) in earth volumes adjacent to the maturing rupture zone of a large earthquake. The techniques we use include estimation of the seismicity level for the region using the SOUS’09 scale; calculation of the variations in the slope of the recurrence relation, identification of statistically significant anomalies in the slope using the Z test, and calculation of the seismic activity A 10; monitoring the RTL parameter and variations in the area of seismogenic ruptures; using the Z test to detect areas of statistically significant decreases in the rate of seismicity; and identification of earthquake clusters. We furnish examples of such anomalies in these seismicity parameters prior to large earthquakes in Kamchatka.  相似文献   

7.
The variations in the intensity of the global seismic process during the 20th and beginning of the 21st centuries are analyzed. It is established that the evolution of the global seismic process is marked by a trend of a certain quasi-periodicity in the release of seismic energy. The analysis of the lithospheric seismicity during 113 years has shown that this time interval accommodated three periods of seismic activation separated by two periods of relative seismic quiescence. The global seismicity of the Earth is strongly dominated by the contributions of the earthquakes in the Pacific seismic belt. A considerable effect is also provided by the northeastern margin of the Indian Ocean. The horizontal displacements of the lithospheric plates are probably responsible for the accumulation of stresses in the potential sources of the earthquakes at the interplate contacts and in the orogenic areas inside the continents. The revealed clustering of the earthquakes with M ≥ 8.3 in the narrow time intervals is probably due to the fact that the strongest seismic event that occurs at the beginning of each activation is a trigger which simultaneously causes the relaxation of a few dozen mature potential sources within 10–15 years. This interval of seismic activation is followed by a relatively quiet period of 30–35 years, when the energy for the next activation is accumulated in a series of high-magnitude sources.  相似文献   

8.
A study of the spatial distribution of seismicity parameters is undertaken along Turkey and its vicinity, using the Gumbel’s third asymptotic distribution of extreme values (GIII). The data set used spans of 111 years (1900–2010). The seismicity of the whole region is subdivided into equal area mesh of 1° lat. × 1° long. Various seismicity parameters examined, resulted from the application of the GIII method. The results show a quite good correlation between the seismicity parameters and the tectonic regime of the studied area. For instance high values concentrated around North Anatolian Fault. The x 2-test is applied throughout the whole process and in every stage of GIII, in order to check the accuracy of the obtained results. The spatial distribution of upper-bound (ω) formed a W-shape pattern, which shows the difference in the mechanical structure of the materials in the examined area.  相似文献   

9.
We analyze the ground motion time histories due to the local seismicity near the Itoiz reservoir to estimate the near-source, surface 3D displacement gradients and dynamic deformations. The seismic data were obtained by a semipermanent broadband and accelerometric network located on surface and at underground sites. The dynamic deformation field was calculated by two different methodologies: first, by the seismo-geodetic method using the data from a three-station microarray located close to the dam, and second, by single station estimates of the displacement gradients. The dynamic deformations obtained from both methods were compared and analyzed in the context of the local free-field effects. The shallow 1D velocity structure was estimated from the seismic data by modeling the body wave travel times. Time histories obtained from both methods result quite similar in the time window of body wave arrivals. The strain misfits between methods vary from 1.4 to 35.0 % and rotational misfits vary from 2.5 to 36.0 %. Amplitudes of displacement gradients vary in the range of 10?8 to 10?7 strains. From these results, a new scaling analysis by numerical modeling is proposed in order to estimate the peak dynamic deformations for different magnitudes, up to the expected maximum M w in the region (M5.5). Peak dynamic deformations due to local M w5.5 earthquakes would reach amplitudes of 10?5 strain and 10?3 radians at the Itoiz dam. The single station method shows to be an adequate option for the analysis of local seismicity, where few three-component stations are available. The results obtained here could help to extend the applicability of these methodologies to other sites of engineering interest.  相似文献   

10.
We study the microseismicity (M L ?<?2) in the region of Landau, SW Germany. Here, due to thick sediments (~3?km) and high cultural seismic noise, the signal-to-noise ratio is in general very low for microearthquakes. To gain new insights into the occurrence of very small seismic events, we apply a three-step detection approach and are able to identify 207 microseismic events (?1?<?M L ?<?~1) with signal-to-noise ratios smaller than 3. Recordings from a temporary broadband network are used with station distances of approximately 10?km. First, we apply a short-term to long-term average detection algorithm for data reduction. The detection algorithm is affected severely by transient noise signals. Therefore, the most promising detections, selected by coinciding triggers and high-amplitude measures, are reviewed manually. Thirteen seismic events are identified in this way. Finally, we conduct a cross-correlation analysis. As master template, we use the stacked waveforms of five manually detected seismic events with a repeating waveform. This search reveals additional 194 events with a cross-correlation coefficient exceeding 0.65 which ensures a stable identification. Our analysis shows that the repeating events occurred during the stimulation of a geothermal reservoir within a source region of only about 0.5?km3. Natural background seismicity exceeding our detection level of M L ?~?0.7 is not found in the region of Landau by our analysis.  相似文献   

11.
—?Microseismicity (M?M?M?M??6 were also monitored at a crustal movement monitoring station located several hundred meters from the veins. It was found that the opening of the vertical ore veins primary led to significant strain and tilt, but not to seismicity, because the delay and the longer duration of the seismicity were significant. Most seismic events involve thrusting mechanisms that are consistent with the present stress state of E-W-oriented tectonic compression, but are not consistent with the opening of the deepest ore vein. Interstingly, all the events within a few months of the heavy rainfall occurred near the faults that offset the deepest ore veins, wheareas all those events located away from the deepest ore veins occurred many months after the heavy rainfall. Consequently, the delayed diffusion of water appears to have played a dominant role in reducing rock strength, which led to seismicity in the Ikuno mine.  相似文献   

12.
A pronounced increase in seismicity started in and around Longtan reservoir, southwestern China after October 1, 2006 when it began the impoundment, and by the end of May 14, 2010, about 3,233 earthquakes with ?0.6?≤?M L?≤?4.2 had been located. This seismicity which occurred in five clusters mainly concentrated in the areas where few earthquakes had occurred before the first filling. There were four water filling periods in the Longtan reservoir, and the observed reservoir-induced seismicity (RIS) shows a strong correlation with the filling cycles. After the first filling, there appears to be an instant undrained response due to an elastic response to the reservoir load in the third and fourth cluster. Then, this seismicity is followed by a delayed, drained response due to pore pressure diffusion, with the seismicity migrating outwards in one or more directions in the second and third filling period. The seismic diffusivity (α s) we estimated is about 4.54?×?105?cm2/s. The activity levels in the five clusters are different due to differences in the structures and permeabilities of the faults. The delayed seismic response to the filling in the third cluster was due to the combined effects of the lack of local fault intersecting the reservoir and lower permeability of the rock. The b value we obtained for reservoir-induced events was significantly different and higher than that of pre-impoundment natural tectonic earthquakes in the Longtan reservoir. The results of relocated earthquakes based on double difference earthquake location algorithm showed that their focal depths were mainly shallower than about 10 km and the distribution of relocated RIS in four clusters had no relation with these intersecting faults in the Longtan reservoir except the fifth cluster. All these characteristics of RIS in the Longtan reservoir indicate that they may relate to the coupled poroelastic response that includes both pore pressure diffusion and an undrained response, but the pore pressure diffusion and the water permeation appear to play a more important role on inducing the earthquakes in Longtan reservoir.  相似文献   

13.
Premonitory phases (seismic quiescence and foreshock activity) have been retrospectively identified before the Neftegorsk and Uglegorsk earthquakes using the RTL technique. The probabilities that these phases were accidental are less than 1 and 2%, respectively. This allows an optimistic assessment of the possibility of applying this technique to seismicity at Sakhalin. The estimates of the time and energy class for the two earthquakes, using a model of self-organized seismic criticality, proved to be unconvincing because obvious acceleration of the seismic process prior to these seismic events did not occur. The applicability of this approach to the seismicity at Sakhalin should be tested for future large earthquakes. The regional Sakhalin catalog for 1980–2000, with a lowest completely reported energy class of K = 8 (lent by the Geophysical Service, Russian Academy of Sciences) was used as the database for this study.  相似文献   

14.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

15.
—?An intriguing observation in Greenland is a clear spatial correlation between seismicity and deglaciated areas along passive continental margins, a piece of evidence for earthquake triggering due to postglacial rebound. Another piece of evidence for induced seismicity due to deglaciation derives from earthquake source mechanisms. Sparse, low magnitude seismicity has made it difficult to determine focal mechanisms from Greenland earthquakes. On the basis of two normal faulting events along deglaciated margins and from the spatial distribution of epicenters, earlier investigators suggested that the earthquakes of Greenland are due to postglacial rebound. This interpretation is tested here by using more recent data. Broadband waveforms of teleseismic P waves from the August 10, 1993 (m b = 5.4) and October 14, 1998 (m b = 5.1) earthquakes have been inverted for moment tensors and source parameters. Both mechanisms indicate normal faulting with small strike-slip components: the 1993 event, strike = 348.9°, dip = 41.0°, rake =?56.3°, focal depth = 11?km, seismic moment = 1.03?×?1024 dyne-cm, and M w = 5.3; the 1998 event, strike = 61.6°, dip = 58.0°, rake =?95.5°, focal depth = 5?km, seismic moment = 5.72?×?1023 dyne-cm, and M w = 5.1. These and the two prior events support the theory that the shallow part of the lithosphere beneath the deglaciated margins is under horizontal extension. The observed stress field can be explained as flexural stresses due to removal of ice loads and surface loads by glacial erosion. These local extensional stresses are further enhanced by the spreading stress of continental crust and reactivate preexisting faults. Earthquake characteristics observed from Greenland suggest that the dominant seismogenic stresses are from postglacial rebound and spreading of the continental lithosphere.  相似文献   

16.
—A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q∝ωα is shown to require a distribution function of P(L)L -m with m=4-2α The activation energy of Q ?1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q ?1 strongly suggests that the Q ?1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of ~ 108 m?2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of ~ 10?6, thus even a small strain (~ 10?6?10?4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.  相似文献   

17.
The work continues the study of interrelations between strong flare-induced magnetic storms and variations of seismicity. Using data on the time dependences of the parameters of seismic noise (average level and root mean squared (RMS)), recorded by stations of the KNET seismic network during monitoring of the territory of Bishkek geodynamic site (North Tien Shan). The presented results indicate the high sensitivity of the seismic noise in the frequency range of 10–20 Hz to external and, in particular, electromagnetic effects in comparison to the seismic activity. We noted the manifestations of the effects of magnetic storms that occurred after strong and super-strong solar flares in 2000–2006. These were short-term increases in the RMS of seismic noise, preceding changes in the accumulation rate of the number of events. The obtained results agree with conclusions about the interrelation between seismicity and magnetic storms. A model is suggested to describe one of the possible mechanisms by which the electromagnetic pulses and the currents induced by them in a medium devoid of piezoelectric properties influence the seismic process.  相似文献   

18.
The seismic regime taking place before the Tohoku mega-earthquake was studied using the catalog of the Japan Meteorological Agency (JMA). We show that the Tohoku earthquake was preceded by a 6–7-year period of regional reduction in the b-value and in the rate of main shocks. The space-time regions that involved precursory activation were nearly identical with the predictive phenomena that were previously detected by A.A. Lyubushin from an analysis of seismic noise based on data from the Japanese F-net. We discovered a previously unknown effect of correlation between the number of main shocks and the b-value. Both the ordinary foreshock activation and the longer weaker tendency, which consist in a precursory increase in the seismicity rate, were identified in the vicinities of M ≈ 7 Japanese earthquakes (similarly to the seismicity in the Generalized Vicinities of large earthquakes based on worldwide data).  相似文献   

19.
Assessing the detection threshold of seismic networks becomes of increased importance namely in the context of monitoring induced seismicity due to underground operations. Achieving the maximum possible sensitivity of industrial seismic monitoring is a precondition for successful control of technological procedures. Similarly, the lowest detection threshold is desirable when monitoring the natural seismic activity aimed to imaging the fault structures in 3D and to understanding the ongoing processes in the crust. We compare the application of two different methods to the data of the seismic network WEBNET that monitors the earthquake swarm activity of the West-Bohemia/Vogtland region. First, we evaluate the absolute noise level and its possible non-stationary character that results in hampering the detectability of the seismic network by producing false alarms. This is realized by the statistical analysis of the noise amplitudes using the ratio of 99 and 95 percentiles. Second, the magnitude of completeness is determined for each of the nine stations by analysing the automatic detections of an intensive swarm period from August 2011. The magnitude–frequency distributions of all detected events and events detected at individual stations are compared to determine the magnitude of completeness at a selected completeness level. The resulting magnitude of completeness M c of most of the stations varies between ?0.9 and ?0.5; an anomalous high M c of 0.0 is found at the most distant station, which is probably due to inadequate correction for attenuation. We find that while the absolute noise level has no significant influence to the station sensitivity, the noise stationarity correlates with station sensitivity expressed in low magnitude of completeness and vice versa. This qualifies the method of analysing the stationary character of seismic noise as an effective tool for site surveying during the seismic station deployment.  相似文献   

20.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号