首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Paleoproterozoic Liaohe assemblage and associated Liaoji granitoids represent the youngest basement in the Eastern Block of the North China Craton. Various structural elements and metamorphic reaction relations indicate that the Liaohe assemblage has experienced three distinct deformational events (D1 to D3) and four episodes of metamorphism (M1 to M4). The earliest greenschist facies event (M1) is recognized in undeformed or weakly deformed domains wrapped by the S1 schistosity, suggesting that M1 occurred before D1. The D1 deformation produced small, mostly meter-scale, isoclinal and recumbent folds (F1), an associated penetrative axial planar schistosity (S1), a mineral stretching lineation (L1) and regional-scale ductile shear zones. Concurrent with D1 was M2 metamorphism, which occurred before D2 and produced low- to medium-pressure amphibolite facies assemblages. Regionally divergent motion senses reflected by the asymmetric F1 folds and other sense-of-shear indicators, together with the radial distribution of the L1 lineation surrounding the Liaoji granitoids, imply that D1 represents an extensional event. The D2 deformation produced open to tight F2 folds of varying scales, S2 axial crenulation cleavages and ENE-NE-striking thrust faults, involving broadly NW–SE compression. Following D2 was M3 metamorphism that led to the formation of sillimanite and cordierite in low-pressure type rocks and kyanite in medium-pressure rocks. The last deformational event (D3) formed NW-WNW-trending folds (F3), axial planar kink bands, spaced cleavages (S3), and strike–slip and thrust faults, which deflect the earlier D1 and D2 structures. D3 occurred at a shallow crustal level and was associated with, or followed by, a greenschist facies retrograde metamorphic event (M4).The Liaohe assemblage and associated Liaoji granitoids are considered to have formed in a Paleoproterozoic rift, the late spreading of which led to the occurrence of the early extensional deformation (D1) and the M1 and M2 metamorphism, and the final closing of which was associated with the D2 and D3 phases of deformation and M3 and M4 metamorphism.  相似文献   

2.
《Gondwana Research》2001,4(3):337-357
The Precambrian basement of the Schirmacher Hills, Queen Maud Land, East Antarctica has evolved through multiple episodes of deformation and metamorphism. The rocks have suffered at least five phases of deformation. The imprint of the early deformation, D1, is preserved in some mafic isolated enclaves. The second and the third deformations (D2 and D3) are the dominant deformations of this area and produced isoclinal folds with transposition of earlier cleavages. The later deformations, D4 and D5, produced two sets of open, upright folds. Detailed mineralogical, textural, mineral chemical studies and geothermobarometry on khondalite, leptynite as well as different varieties of enderbite and mafic granulites have revealed that the rocks suffered two phases of metamorphism under granulite facies conditions followed by an amphibolite facies overprint. M1 is broadly coeval with D1 only in mafic granulite enclaves within enderbitic gneiss, and took place at ca. 10 Kbar, 900° C. The mafic magma, parental to the enclaves, probably crystallized at 11.2 Kbar. Following post-peak near isobaric cooling, the mafic granulites were transported to shallower levels by the enderbitic magma. M2, recorded in all the lithologies, occurred at ca. 8 Kbar, 800–850°C and synchronous with D2. Post peak M2 evolution of the rocks was characterized by a pressure — temperature drop of 2 Kbar and 200°C respectively and textures indicative of both cooling and decompression are preserved in different rocks. The relative timing of the two, however, cannot be worked out. M3, synchronous with D3, took place at 6 Kbar, 600–650°C and evolved hydrous fluid flux. Correlation with available structural and geochronological data shows that both M1 and M2 could be of Grenvillian event. M3 could well be Pan-African age.  相似文献   

3.
The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D1 and D2) and at least two metamorphic events (M1 and M2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite‐facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600–620°C and ∼7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M2). Secondary phases such as garnet II biotite II, Andalusite II constrain the temperature and pressure of M2 retrograde metamorphism to 520–560°C and 2.5–3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33°C km−1, which indicates that peak metamorphism was of Barrovian type and occurred under medium‐pressure conditions. The MMC followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo‐suture zones and ophiolitic rocks around the high‐grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island‐arc type cratonization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
SHRIMP U–Pb zircon isotopic data have been obtained for four samples collected from granitoids and paragneisses in the Fraser Complex, a large composite metagabbroic body cropping out in the Mesoproterozoic Albany‐Fraser Orogen of Western Australia. The data are combined with the results of field mapping and petrographic analysis to revise a model for the geological evolution of the Fraser Complex. Three main phases of deformation are recognised in the Fraser Complex (D1–3) associated with two metamorphic events (M1–2), which involve four distinguishable episodes of recrystallisation. The first metamorphic event recognised (M1a/D1) reached granulite facies and is characterised by peak T ≥800°C and P = 600–700 MPa. A syn‐M1a/D1 charnockite has a U–Pb SHRIMP zircon age of 1301 ± 6 Ma, which also provides an estimate for the age of intrusion of Fraser Complex gabbroic rocks. Disequilibrium textures comprising randomly oriented minerals (M1b), consistent with approximately isobaric cooling, formed in various lithologies in the interval between D1 and D2. Post‐D1, pre‐D2 granites intruded at 1293 ± 8 Ma and were foliated during the D2 event, which culminated in the burial of the Fraser Complex to depths equivalent to 800–1000 MPa. Following burial, pyroxene granulites on the western boundary of the complex were pervasively retrogressed to garnet amphibolite (M2a). An igneous crystallisation age of 1288 ± 12 Ma from a syn‐M2a aplite dyke suggests that retrogression may have occurred only a few millions of years after the peak of granulite facies metamorphism. Exhumation to depths of less than ~400 MPa occurred within ~20–30 million years of the M2a pressure peak. Associated deformation (D3) is characterised by the development of mylonite and transitional greenschist/amphibolite facies disequilibrium textures (M2b).  相似文献   

5.
A complex of Precambrian polymetamorphic gneisses and granitoids of the Churchill structural province, northeastern Alberta, Canada has been examined structurally, petrographically, chemically and geochronologically. An Archean basement gneiss complex is indicated by Rb-Sr dating of pegmatites which cut both gneisses and granitoids (2470 ± 26 Ma with an initial 87Sr/86Sr ratio of 0.7030 ± 0.0008). A high-pressure granulite facies (M1) mineral assemblage and older structures (D1) are assigned to the Archean. A moderate-pressure granulite facies (M2.1), a low-pressure amphibolite facies (M2.2), a greenschist facies (M2.3), and younger structures (D2) are of Aphebian age. Formation of granitoids by anatexis of the pre-existing Archean basement complex during M2.1 is indicated by their Aphebian ages (ca. 1900 Ma) and high initial 87Sr/86Sr ratios (0.7100 ± 0.0018). The path of retrograde metamorphism is linked with relatively slow rates of uplift and cooling. Late Aphebian sediments attained low-grade greenschist facies metamorphism only and are younger than the other metamorphic rocks. The tectonic evolution of this Precambrian mobile belt during the Aphebian contrasts with the stable Archean cratonic block in the Slave province to the north.  相似文献   

6.
The present work concerns two occurrences of Neoproterozoic volcaniclastic metasediments in the Central Eastern Desert (CED) of Egypt namely Alam occurrence and Atalla occurrence. They are mainly composed of bedded successions of feldspathic and feldspathic-lithic metagreywackes, arkosic metagreywackes, metasiltstones, and subordinate metaconglomerates. The rocks have been subjected mainly to various ductile deformational events (D1 and D2) due to NE–SW compression and later deformation (D3). The D1 deformation is synchronous with greenschist facies metamorphism (M1). The Alam metagreywackes show oceanic arc tectonic setting. The greywackes have clasts of quartz, feldspar, and metamorphic amphibole after pyroxene and show variable abundances of Cr, Ni, and V. Their provenance components are mainly of evolved felsic and mafic (bimodal) island arcs. The rocks are suggested to be deposited in a localized “intra-arc basin.” The metagreywackes of Atalla show tectonic setting affinity similar to continental sland arc or active continental margin. Their geochemical characteristics reflect the presence of felsic rocks as the main sources, together with minor inputs of intermediate rocks and reworked mineral grains of quartz and feldspar. They are deposited in a localized “retro-arc basins” of an active continental margin. The whole sequences of both Atalla and Alam sediments have been subjected to deformation and contemporaneous regional metamorphism during arc-arc or arc-continent collision. Newproterozoic clastic metasedimentary rocks in the CED appear to have been deposited in arc-related basins, including interarc or back-arc basins, intra-arc basins, and retro-arc basin of active continental margin.  相似文献   

7.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

8.
A suite of rocks from Borra Carbonate Granulite Complex (BCGC) in the Eastern Ghats granulite belt displays superposed structures and overprinted mineral assemblages that reveal multiple episodes of tectonothermal reworking of the complex under granulite facies condition. Five distinct episodes of deformation (D1, D2, D3, D4 and D5) and four phases of metamorphism (M1, M2, M3 and M4) are recorded. The signature of the earliest tectonothermal event, D1 is a gneissic foliation (S1) denned by segregation of peak granulite facies mineral assemblages corresponding to prograde M1 metamorphism. M2 metamorphic overprint represents an episode of near-isobaric cooling of the complex under a static condition. D2 represents an episode of ductile deformation manifested by isoclinal folding (F2) and associated extensional structures, within a broad framework of coaxial bulk deformation. The present study reveals that D2 took place subsequent to M2 - Subsequent deformation, D3, produced F3 folds and also deformations of boudins formed during D2. M3, which is synchronous with F3, represents a near isothermal decompression of the BCGC. This was followed by a weak structural readjustment (D4), producing E-W cross folds. The latter was not, however, associated with any recognizable petrological reworking. In the terminal events, deformation (D5) and mineral reactions (M4) were localized along narrow intersecting shear zones. The latter acted as channelways for carbonic and still later hydrous fluid infiltration. The available thermobarometric data from BCGC and other areas of the Eastern Ghats belt reveal that reworking during M2 and M3 ensued in a thermally perturbed regime. The high thermal regime might also have persisted during carbonic fluid infiltration related to terminal reworking (M4).  相似文献   

9.
《Geodinamica Acta》2013,26(3-4):299-316
Western Anatolia (Turkey) is a region of widespread active N-S continental extension that forms the eastern part of the Aegean extensional province. The extension in the region is expressed by two distinct/different structural styles, separated by a short-term gap: (1) rapid exhumation of metamorphic core complexes along presently low-angle ductile-brittle normal faults commenced by the latest Oligocene-Early Miocene period, and; (2) late stretching of crust and, consequent graben evolution along Plio-Quaternary high-angle normal faults, cross-cutting the pre-existing low-angle normal faults. However, current understanding of the processes (tectonic quiescence vs N-S continental compression) operating during the short-time interval is incomplete. This paper therefore reports the results of recent field mapping and structural analysis from the NE of Küçük Menderes Graben—Kiraz Basin—that shed lights on the processes operating during this short-time interval. The data includes the thrusting of metamorphic rocks of the Menderes Massif over the Mio-Pliocene sediments along WNW-ESE-trending high-angle reverse fault and the development of compressional fabrics in the metamorphic rocks of the Menderes Massif. There, the metamorphic rocks display evidence for four distinct phases of deformation: (1) southfacing top-N ductile fabrics developed at relatively high-grade metamorphic conditions, possibly during the Eocene main Menderes metamorphism (amphibolite facies) associated with top-N thrust tectonics (D1); (2) top-S and top-N ductile gentle-moderatley south-dipping extensional fabrics formed at relatively lower-grade metamorphic (possibly greenschist facies) conditions associated with the exhumation of Menderes Massif along presently low-angle normal fault plane that accompanied the first phase of extension (D2); (3) moderately north-dipping top-S ductile-brittle fabrics, present configuration of which suggest a thrust-related compression (D3); and (4) south-facing approximately E-W-trending brittle high-angle normal faults (D4) that form the youngest structures in the region. It is interpreted that D4 faults are time equivalent of graben-bounding major high-angle normal faults and they correspond to the second phase of extension in western Anatolia. The presence of thrust-related D3 compressional fabrics suggests N-S compression during the time interval between the two phases of extension (D2 and D4). The results of the present study therefore support the episodic, two-stage extension model in western Anatolia and confirm that a short-time, intervening N-S compression separated the two distinct phases.  相似文献   

10.
Large-scale structures, textures and mineral assemblages in the Precambrian rocks of the Banded Gneissic Complex and the overlying Delhi Group in north-central Aravalli Mountain reveal a complex deformational-crystallization history. In the basement Gneissic Complex at least three deformational events, D0, D1 and D2, and two separate episodes of metamorphism, M1 and M2, are recognized. The supracrustal Delhi Rocks display only two phases of deformation, D1 and D2, associated with a single protracted period of metamorphism, M2.The first phase of deformation (D1) of the Delhi orogeny (1650-900 m.y.) produced large isoclinal folds that are overturned towards the southeast and have gentle plunges in NE and SW directions. The second phase of deformation (D2) gave rise to tight open folds on the limbs and axial-plane surfaces of the D1 folds. These folds generally plunge towards the N and NNW at 30°–80°. In the Basement Complex one more deformation (D0) of the Pre-Delhi orogeny (> 2000 m.y.) is recorded by the presence of reclined and recumbent folds with W to WNW trending fold axes. The D0 folds were superimposed by D1 and D2 folds during the Delhi orogeny.The three deformational events have been correlated with the crystallization periods of minerals in the rocks and a setting in time is established for this part of the Aravalli range.  相似文献   

11.
The metamorphic rocks of the Jutogh Series around Simla, structurally overlying the less metamorphosed rock groups along a thrust contact, have been involved in three phases of deformation and two episodes of metamorphism. The first metamorphism is in the albite-epidote-amphibolite facies in a major part of the area, reaching the amphibolite facies locally in the central part. This metamorphism is late-to post-kinematic with reference to the F 1 movement, the thermal peak having been reached in a post-F 1 pre-F 2 static phase. The second metamorphism, syn-to post-tectonic with respect to F 2 but preceding F 3, is generally in the greenschist facies, and only locally in the albite-epidote-amphibolite facies in the higher structural levels. Metamorphic overprinting has caused widespread retrogression and disequilibrium assemblages. As the large scale recumbent folding and thrusting of F 1 and F 2 phases belong to the Tertiary Himalayan orogeny, the metamorphism in the Jutogh Series could not have been Precambrian in age.  相似文献   

12.
《Geodinamica Acta》2001,14(6):345-360
In the southeastern Ötztal basement remnants of eo-Alpine high-pressure metamorphism as well as deformation related to the emplacement of these eclogites are preserved. The eo-Alpine age of the two main ductile deformation phases is constrained by Ar-Ar and Rb-Sr mica cooling ages of about 80 Ma, providing a lower, and by deformed Permo-Mesozoic rocks, providing an upper time limit. While high-pressure minerals (M1) are aligned along structures of the first deformation phase (D1), subsequently grown amphibolite facies minerals (M2) are late- to post-kinematic with respect to the third phase (D3). D1 is characterized by non-coaxial deformation producing an E-W oriented stretching lineation, the younger phases D2 and D3 by folding, where the older set of folds strikes N-S, the younger one E-W. These results imply a basic change of tectonic movement direction during the eo-Alpine event. Structural and petrological evidences favour a two-stage exhumation model, where tectonic exhumation (D1, D2 and D3) is correlated with the first stage, statically overprinted under amphibolite facies conditions (M2). As there is no evidence of significant deformation after this stage, erosion and surface uplift most probably represent the relevant processes for the last part of the exhumation path. During this stage the high-pressure rocks were exhumed from amphibolite facies conditions to the surface.  相似文献   

13.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

14.
Metabasaltic rocks in the Klamath Mountains of California with ‘komatiitic’ major element concentrations were investigated in order to elucidate the origin of the magnesian signature. Trace-element concentrations preserve relict igneous trends and suggest that the rocks are not komatitic basalts, but immature arc rocks and within-plate alkalic lavas. Correlation of ‘excess’ MgO with the volume per cent hornblende (±clinopyroxene) suggests that the presence of cumulus phases contributes to the MgO-rich compositions. Early submarine alteration produced regional δ18O values of +10±1.5%° and shifts in Al2O3, Na2O, and K2O concentrations. Regional metamorphic grade in the study area varies from biotite-zone greenschist facies (350–550°C, c. 3 kbar) southward to prehnite–actinolite facies (200–400°C, ≤3 kbar), but little isotopic or elemental change occurred during the regional recrystallization. The greenschist facies assemblage is actinolitic hornblende + phengite + epidote + sodic plagioclase + microcline + chlorite + titanite + hematite + quartz in Ti-poor metabasaltic rocks; in addition to these phases biotite is present in Ti-rich analogues. Lower grade greenstones contain prehnite and more nearly stoichiometric actinolite. The moderate to low pressures of regional metamorphism are compatible with P–T conditions in a magmatic arc. Later contact metamorphism at 2–2.9±0.5 kbar and at peak temperatures approaching 600° C around the English Peak and Russian Peak granodiorites produced 3–4–km-wide aureoles typified by gradual, systematic increases in the pargasite content of amphibole, muscovite content of potassic white mica, and anorthite content of plagioclase compositions. Metasomatism during contact metamorphism produced further increases in bulk-rock δ18OSMOW of as much as +6%°. Thus, the unusually MgO-rich nature of the Sawyers Bar rocks may be attributed at least partly to metasomatism and the presence of magnesian cumulus phases.  相似文献   

15.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

16.
The metamorphic rocks of the Aligudarz-Khonsar region can be divided into nine groups: slate, phyllite, sericite schist, biotite-muscovite schist, garnet schist, garnet-staurolite schist, staurolite schist, mylonitic granite, and marble. In this metamorphic region, four phases of metamorphism can be identified (dynamothermal, thermal, dynamic and retrograde metamorphism) and there are three deformation phases (D1, D2 and D3). Paleozoic pelagic shales experienced prograde metamorphism and polymetamorphism from the greenschist to amphibolite facies along the kyanite geotherm. The metapelites show prograde dynamothermal metamorphism from the greenschist to amphibolite facies. Maximum degree of dynamothermal metamorphism is seen in the Nughan bridge area. Also development of the mylonitic granites in the Nughan bridge area shows that dynamic metamorphism in this area was more intense than in other parts of the AligudarzKhonsar metapelitic zone. The chemical zoning of garnets shows three stages of growth and syn-tectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at the greenschist to amphibolite facies (kyanite zone). Thermodynamic studies of these rocks indicate that the metapelites in the Aligudarz-Khonsar region formed at 490–550°C and 0.47–5.6 kbar.  相似文献   

17.
Sushina nepheline syenite gneisses of Early Proterozoic North Singhbhum Mobile Belt (NSMB), eastern India suffered regional metamorphism under greenschist-amphibolite transitional facies condition. The Agpaitic Sushina nepheline syenite gneisses consist of albite, K-feldspar, nepheline (close to Morozewicz-Buerger composition), aegirine, biotite, epidote, piemontite, sodalite, cancrinite, natrolite and local alkali amphibole. Accessory phases include zircon, hematite, magnetite, rare pyrochlore and occasional eudialyte and manganoan calcic zirconosilicates. Mineral chemistry of albite, K-feldspar, nepheline, aegirine, alkali amphibole, natrolite and zirconium silicate minerals are described. The detailed textural features together with chemical data of some minerals indicate metamorphic overprint of these rocks. A new reaction is given for the genesis of metamorphic epidote. Metamorphic piemontite suggests greenschist facies metamorphism under high fO2 (Hematite-Magnetite buffer). Up to 15.34 mol% of jadeite component in aegirine suggests that the metamorphic grade of the nepheline syenite gneiss reached at least to greenschist-amphibolite transitional facies or higher. Nepheline geothermometry suggests temperature of metamorphism <500 °C, which is consistent with greenschist facies metamorphism of surrounding chlorite-biotite-garnet phyllite country rock.  相似文献   

18.
区域变质作用过程中,矿物受到热力与动力作用,相应地发生结晶、重结晶与变形两个方面的变化,产生出多种型式的变质结构。依据变质结构的特点,矿物本身的变化和共生矿物之间的相互关系,可以分析多期变质作用的期次、顺序,也可以鉴别结晶作用与变形作用的先后关系,因此能够通过这种研究来复原变质地体的变质变形历史。本文研究河北省迁西县太平寨地区及附近各地的古老变质地体的变质结构特点,并研讨其地质意义。  相似文献   

19.
北祁连加里东期俯冲-增生楔结构及动力学   总被引:28,自引:1,他引:27       下载免费PDF全文
张建新 《地质科学》1998,33(3):290-299
北祁连加里东朝俯冲-增生楔可分为浅部和深部两个单元。浅部单元主要由蛇绿岩、蛇绿混杂岩及深海复理石所组成,极浅变质或没有变质。深部单元主要由HP/LT蓝片岩、透镜状的蛇纹岩、变辉长岩及绿片岩(主要为退变质产物)所组成。普遍遭受HP/LT变质作用和绿片岩相的退变质作用。两个单元同时形成于不同的构造层次,具有类似的原岩特征。在加里东期,俯冲-增生楔共经历4期变形作用(D1,D2,D3,D4)和3期变质作用(M1,M2,M3).从D1→D4反映了俯冲-增生楔从俯冲作用→深部构造板底垫托作用→折返(构造顶蚀)→剥蚀的动力学演化过程。  相似文献   

20.
In the Wadi Um Had area, Central Eastern Desert, Egypt, NE-trending metapelitic and molasse-type successions are exposed. The metasediments bear the geochemical signature of a first depositional cycle in two distinct continental island arc settings that derived from incipiently-to moderately-weathered intermediate to felsic sources under generally warm and humid conditions. The metapelitic succession records three distinct episodes of metamorphism, M1–M3, whereas the molasse-type succession records only the last metamorphic episode, M3. M1/D1 records an amphibolite facies tectono-metamorphic event that has been dated at 625 ± 5 Ma, whereas M2/D2 records a greenschist facies subduction-related event. Collision of the two domains during a NE–SW shortening D3, culminated in formation of the macroscopic NW–SE-trending folds. D2 and D3 correlate with the gneiss-forming event, which is constrained at <609 Ma, and doming of the nearby Meatiq gneiss dome, respectively. M3 is a hornblende hornfels facies thermal metamorphism related to the intrusion of the post-orogenic, Neoproterozoic (596.3 Ma) Um Had granite. This study records, for the first time, a tectono-metamorphic phase predating the gneiss-forming event in the Meatiq gneiss dome, and pushes the boundary of the Late Ediacaran terminal collision between East and West Gondwana to ≤600 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号