首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Global acquisition of infrared spectra and high-resolution visible and infrared imagery has enabled the placement of compositional information within stratigraphic and geologic context. Mare Serpentis, a low albedo region located northwest of Hellas Basin, is rich in spectral and thermophysical diversity and host to numerous isolated exposures of in situ rocky material. Most martian surfaces are dominated by fine-grained particulate materials that bear an uncertain compositional and spatial relationship to their source. Thus location and characterization of in situ rock exposures is important for understanding the origin of highland materials and the processes which have modified those materials. Using spectral, thermophysical and morphologic information, we assess the local and regional stratigraphy of the Mare Serpentis surface in an effort to reconstruct the geologic history of the region. The martian highlands in Mare Serpentis are dominated by two interspersed surface units, which have distinct compositional and thermophysical properties: (1) rock-dominated surfaces relatively enriched in olivine and pyroxene, and depleted in high-silica phases, and (2) sediment or indurated material depleted in olivine and pyroxene, with relatively higher abundance of high-silica phases. This is a major, previously unrecognized trend which appears to be pervasive in the Mare Serpentis region and possibly in other highland areas. The detailed observations have led us to form two hypotheses for the relationship between these two units: either (1) they are related through a widespread mechanical and/or chemical alteration process, where less-mafic plains materials are derived from the mafic bedrock, but have been compositionally altered in the process of regolith formation, or (2) they are stratigraphically distinct units representing separate episodes of upper crust formation. Existing observations suggest that the second scenario is more likely. In this scenario, plains materials represent older, degraded, and possibly altered, “basement” rock, whereas the rocky exposures represent later additions to the crust and are probably volcanic in origin. These hypotheses should be further testable with decimeter-resolution imagery and meter-resolution short wavelength infrared spectra.  相似文献   

3.
The Mawrth Vallis region contains an extensive (at least 300 km × 400 km) and thick (?300 m), finely layered (at meter scale), clay-rich unit detected by OMEGA. We use OMEGA, HRSC DTMs derived from stereoscopic imagery, HRSC color imagery and high resolution imagery such as MOC, CTX and HiRISE to characterize the geometry and the composition of the clay-rich unit at the regional scale. Our results show that the clay-bearing unit can be divided into sub-units on the basis of differences in color and composition. In false-color visible imagery, alternating white/bluish and orange/red colored units correspond to a compositional succession of, respectively, Al- and Fe- or Mg-phyllosilicate rich material. Geological cross-sections are presented along the principal outcrops of the region in order to define the stratigraphy of these sub-units. This method shows that the dips of the sub-units are frequently close to the slopes of the present topography, except for scarps visible at the dichotomy boundary, inside impact craters walls, and outcrops inside Mawrth Vallis. In addition to the Al- and Fe- or Mg-phyllosilicate rich sub-units, an altered surface is identified as the lower basement unit. We propose two possible end-member scenarios to explain the derived stratigraphy: (1) alteration of volcaniclastic, aeolian or aqueous layered deposits of various compositions by groundwater, resulting in distinct altered rocks; or (2) Alteration coeval with the deposition of sediments under varying chemical conditions, in wet pedodiagenetic environment.  相似文献   

4.
A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan.SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage.We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.  相似文献   

5.
The Solar Dynamics Observatory provides multiwavelength imagery from extreme ultraviolet (EUV) to visible light as well as magnetic-field measurements. These data enable us to study the nature of solar activity in different regions of the Sun, from the interior to the corona. For solar-cycle studies, synoptic maps provide a useful way to represent global activity and evolution by extracting a central meridian band from sequences of full-disk images over a full solar Carrington rotation (≈?27.3 days). We present the global evolution during Solar Cycle 24 from 20 May 2010 to 31 August 2013 (CR?2097?–?CR?2140), using synoptic maps constructed from full-disk, line-of-sight magnetic-field imagery and EUV imagery (171 Å, 193 Å, 211 Å, 304 Å, and 335 Å). The synoptic maps have a resolution of 0.1 degree in longitude and steps of 0.001 in sine of latitude. We studied the axisymmetric and non-axisymmetric structures of solar activity using these synoptic maps. To visualize the axisymmetric development of Cycle 24, we generated time–latitude (also called butterfly) images of the solar cycle in all of the wavelengths, by averaging each synoptic map over all longitudes, thus compressing it to a single vertical strip, and then assembling these strips in time order. From these time–latitude images we observe that during the ascending phase of Cycle 24 there is a very good relationship between the integrated magnetic flux and the EUV intensity inside the zone of sunspot activities. We observe a North–South asymmetry of the EUV intensity in high-latitudes. The North–South asymmetry of the emerging magnetic flux developed and resulted in a consequential asymmetry in the timing of the polar magnetic-field reversals.  相似文献   

6.
Yardang identification in Magellan imagery of Venus   总被引:1,自引:0,他引:1  
Yardang complexes should appear as dark lineation groups in Magellan imagery of Venus. Such structures are not found in preliminary analysis of Magellan imagery.  相似文献   

7.
We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite’s surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units.  相似文献   

8.
Enhanced Mariner 9 imagery of Mars, which has been used in short term phenomenon study with Viking imagery, does not have a resolution useful for analysis of short term geological phenomenon such as slump formation.  相似文献   

9.
The initiation phase of coronal mass ejections (CMEs) is a very important aspect of solar physics, as these phenomena ultimately drive space weather in the heliosphere. This phase is known to occur between the photosphere and low corona, where many models introduce an instability and/or magnetic reconnection that triggers a CME, often with associated flaring activity. To this end, it is important to obtain a variety of observations of the low corona to build as clear a picture as possible of the dynamics that occur therein. Here, we combine the EUV imagery of the Sun Watcher using Active Pixel System Detector and Image Processing (SWAP) instrument onboard the Project for Onboard Autonomy (PROBA2) with the white-light imagery of the ground-based Mark-IV K-coronameter (Mk4) at Mauna Loa Solar Observatory (MLSO) to bridge the observational gap that exists between the disk imagery of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and the coronal imagery of the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Methods of multiscale image analysis were applied to the observations to better reveal the coronal signal while suppressing noise and other features. This allowed an investigation into the initiation phase of a CME that was driven by a rising flux-rope structure from a “two-stage” flaring event underlying an extended helmet streamer. It was found that the initial outward motion of the erupting loop system in the EUV observations coincided with the first X-ray flare peak and led to a plasma pile-up of the white-light CME core material. The characterized CME core then underwent a strong jerk in its motion, as the early acceleration increased abruptly, simultaneously with the second X-ray flare peak. The overall system expanded into the helmet streamer to become the larger CME structure observed in the LASCO coronagraph images, which later became concave-outward in shape. Theoretical models for the event are discussed in light of these unique observations, and it is concluded that the formation of either a kink-unstable or torus-unstable flux rope may be the likeliest scenario.  相似文献   

10.
Russian boreal forests have been reshaped by wildland fire for millennia. While fire is a natural component of boreal ecosystems, it impacts various aspects of the environment and affects human well-being. Often fires occur over large remote areas with limited access, which makes their ground-based observation difficult. A significant progress has been made in mapping burned area from satellite imagery, which provides consistent and fairly unbiased estimates of fire impact on areas of interest at multiple scales. Although the information provided by burned area products is highly important, the spatio-temporal dynamics of individual fire events and their impact are less known. In high northern latitudes of Northern Eurasia, MODIS (Moderate Resolution Imaging Spectroradiometer) makes up to four daily observations from each of the Terra and Aqua satellites providing consistent data on fire development with high temporal frequency. Here we introduce an approach to reconstruct the development of fire events based on active fire detections from MODIS. Fire Spread Reconstruction (FSR) provides a means for characterization of fire occurrence over large territories from remotely sensed data. Individual fire detections are clustered within a GIS environment based on a set of rules determining proximity between fire observations in space and time. FSR determines the number of fire events, their approximate size, duration, and fire spread rate and allows for the analysis of fire occurrence and spread as a function of vegetation, fire season, fire weather and other parameters. FSR clusters were compared to burned scars mapped from Landsat7/ETM+ imagery over Yakutia (Russia). While some smaller burn scars were found to be formed through a continuous burning of a single fire event, large burned areas in Siberia were created by a constellation of fire events incorporating over 100 individual fire clusters. Geographic regions were found to have a stronger influence on the rates of fire activity in the area compared to vegetation zones. In addition, fire spread rates do not directly correlate with the intensity of a given fire season. FSR is also used to identify the points of ignition for individual fire events in spatio-temporal domain for fire danger and fire threat modeling. This approach presents another step towards the more complete characterization of fire events from remotely sensed data.  相似文献   

11.
The growth of two high-elevation inland lakes (at 4600 m) was analyzed using satellite imagery (2000–2005) and data were collected over the last decade (1997–2006) at a plateau meteorological station (at 4820 m) and stream gauging data from a station (at 4250 m) in central Tibet. We examined the lake water balance responses to meteorological and hydrological variables. The results show that the lake areas greatly expanded by a maximum of 27.1% (or 43.7 km2) between 1998 and 2005. This expansion appears to be associated with an increase in annual precipitation of 51.0 mm (12.6%), mean annual and winter mean temperature increases of 0.41 °C and 0.71 °C, and an annual runoff increase of 20% during the last decade. The changes point to an abrupt increase in the annual precipitation, mean temperature and runoff occurring in 1996, 1998 and 1997, respectively, and a decrease in the annual pan evaporation that happened in 1996. The timing of lake growth corresponds closely with abrupt increases in the annual precipitation and runoff and with the decrease in the annual evaporation since the mid-1990s. This study indicates a strong positive water balance in these permafrost highland lakes, and provides further evidence of lake growth as a proxy indicator of climate variability and change.  相似文献   

12.
From the Clementine UVVIS imagery of the lunar surface, the abundance of agglutinates in the lunar regolith and their composition in terms of FeO and Al2O3 oxides have been predicted. Data on the spectral, chemical, and mineralogic measurements of about 30 lunar soil samples from the Lunar Samples Characterization Consortium (LSCC) collection were used. The fulfilled prognosis confirms that the mare agglutinates are enriched in Al2O3 and depleted of FeO, while the highland agglutinates are depleted of Al2O3 and enriched in FeO. This behavior can be caused by the global transport of the lunar surface material induced by cosmogenic factors.  相似文献   

13.
The recent development and data collection results of the Astrobiology Instrumentation for Meteor Imaging and Tracking (AIM-IT) system, has demonstrated an ability to point narrow field-of-view instruments at transient events such as meteors. AIM-IT uses the principle of tracking moving objects via a paired set of relay mirrors along with an integrated hardware/software solution, to acquire and track meteors in real-time. Development of the instrument has progressed from a prototype rocker-box system through more recent use of a fast response mirror system during several meteor shower campaigns. Several narrow field of view instruments have been deployed using AIM-IT including high spatial resolution video, high frame rate video, and meteor spectrographic equipment. Analysis of the imagery shows evidence for meteor fragmentation in as many as 20% of the meteors tracked thus far. The success of the AIM-IT technology in tracking meteors during their luminous flight provides a new tool in enhancing the capabilities and data volume that can be obtained with existing narrow field of view instruments.  相似文献   

14.
The Apollo 17 ALSE VHF radar provided imagery and continuous profiling data around the Moon during two revolutions. The imagery data are used to derive depth and diameter measurements of small craters (diameter <30 km). The profiling data are used to study the topography of a few large craters: the bulged floors in Hevelius, Neper, and Aitken; central peaks in Neper and Buisson; and the depressed floor of Maraldi. The same data provided accurate (better than 25 m) profiles of Mare Crisium and Mare Serenitatis.  相似文献   

15.
High-resolution images from the Mars Obiter Camera (MOC) onboard the Mars Global Surveyor (MGS) show a variety of gully features on sloped surfaces of Mars. The mechanism of gully formation is still under debate, although a majority of studies tend to favor a mechanism related to liquid water flow based on geomorphology and fluid mechanics considerations. In this study, we examined four known gully sites using Visible and Infrared Mineralogical Mapping Spectrometer (OMEGA) imagery. In particular, we analyzed the absorption depths of the water-associated absorption bands and concluded that there are stronger water signatures at the gully-exposed sites than in the surrounding areas. This implies that the water signatures, most likely representing water ice, isolated water molecules, and/or hydroxyl molecules incorporated into minerals, are still present in the shallow unconsolidated soils. This study provides additional evidence that water was likely involved in the formation of the gully features and is still locally active on the Martian surface in the present time.  相似文献   

16.
The potential of remotely sensed imagery for Earth science applications has been widely recognised for many years. However, with the advent of space borne sensors, a totally new perspective from which to view the Earth's surface has been available to such disciplines as geology and geography. Primary in this development was the deployment of the Landsat series of Earth observation satellites with their multispectral scanning capability. Although standard single band imagery and false-colour composites contain much geomorphological detail, a great deal more information can be extracted from the digital output of such scanners if the data is subjected to computer-assisted image processing.  相似文献   

17.
A spatially unresolved velocity feature, with an approaching radial velocity of  ≈100 km s−1  with respect to the systemic radial velocity, in a position–velocity array of [O  iii ] 5007-Å line profiles is identified as the kinematical counterpart of a jet from the proplyd LV 5 (158–323) in the core of the Orion nebula. The only candidate in Hubble Space Telescope ( HST ) imagery for this jet appears to be a displaced, ionized knot. Also an elongated jet projects from the proplyd GMR 15 (161–307). Its receding radial velocity difference appears at  ≈80 km s−1  in the same position–velocity array.
A 'standard' model for jets from young, low-mass stars invokes an accelerating, continuous flow outwards with an opening angle of a few degrees. Here an alternative explanation is suggested which may apply to some, if not all, of the proplyd jets. In this, a 'bullet' of dense material is ejected which ploughs through dense circumstellar ambient gas. The decelerating tail of material ablated from the surface of the bullet would be indistinguishable from a continuously emitted jet in current observations.  相似文献   

18.
《Planetary and Space Science》2007,55(14):2173-2191
The High Resolution Stereo Camera (HRSC) has been orbiting the planet Mars since January 2004 onboard the European Space Agency (ESA) Mars Express mission and delivers imagery which is being used for topographic mapping of the planet. The HRSC team has conducted a systematic inter-comparison of different alternatives for the production of high resolution digital terrain models (DTMs) from the multi look HRSC push broom imagery. Based on carefully chosen test sites the test participants have produced DTMs which have been subsequently analysed in a quantitative and a qualitative manner. This paper reports on the results obtained in this test.  相似文献   

19.
Large yardang formations, found on Earth and Mars, have not been detected in Venera 15/16 imagery of Venus.  相似文献   

20.
We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2‐D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color‐coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power‐law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock‐comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号