首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Quaternary Science Reviews》2007,26(19-21):2322-2336
According to tree ring and other records, a series of severe droughts that lasted for decades afflicted western North America during the Medieval period resulting in a more arid climate than in subsequent centuries. A review of proxy evidence from around the world indicates that North American megadroughts were part of a global pattern of Medieval hydroclimate that was distinct from that of today. In particular, the Medieval hydroclimate was wet in northern South America, dry in mid-latitude South America, dry in eastern Africa but with strong Nile River floods and a strong Indian monsoon. This pattern is similar to that accompanying persistent North American droughts in the instrumental era. This pattern is compared to that associated with familiar climate phenomena. The best fit comes from a persistently La Niña-like tropical Pacific and the warm phase of the so-called Atlantic Multidecadal Oscillation. A positive North Atlantic Oscillation (NAO) also helps to explain the Medieval hydroclimate pattern. Limited sea surface temperature reconstructions support the contention that the tropical Pacific was cold and the subtropical North Atlantic was warm, ideal conditions for North American drought. Tentative modeling results indicate that a multi-century La Niña-like state could have arisen as a coupled atmosphere–ocean response to high irradiance and weak volcanism during the Medieval period and that this could in turn have induced a persistently positive NAO state. A La Niña-like state could also induce a strengthening of the North Atlantic meridional overturning circulation, and hence warming of the North Atlantic Ocean, by (i) the ocean response to the positive NAO and by shifting the southern mid-latitude westerlies poleward which (ii) will increase the salt flux from the Indian Ocean into the South Atlantic and (iii) drive stronger Southern Ocean upwelling.  相似文献   

2.
The development of specialized and commercial fishing activity in the island archipelago of Lofoten and Vesterålen in northern Norway is a critical foundation from which to understand the subsequent spread of commercial fishing across the north Atlantic region during the medieval and early modern period. One little understood aspect of this development is the relationship between medieval commercial fishing stations (fiskevaer) and earlier fishing activity. In this article, cultural sediment deposits at Langenesværet, Vesterålen, Northern Norway provide an opportunity to examine this relationship and its implications for current historical models of fishing development in northern Norway and the north Atlantic region. Conventional and AMS radiocarbon dating techniques are used to establish a chronology for the deposits, while activities associated with the sediments are characterized using thin‐section micromorphology supported by proton induced X‐ray emission spectrometry (PIXE). The results suggest that the site commenced formation as early as ca. 3000 B.C. and that the site was first used for specialized fishing activity from the early centuries A.D. The medieval commercial fiskevaer settlement at Langenesværet was introduced to an area that had a longstanding tradition of specialised fishing activity. © 2000 John Wiley & Sons, Inc.  相似文献   

3.
《Quaternary Science Reviews》2004,23(20-22):2231-2246
Palaeoclimatic changes through the last 1200 calibrated years have been documented by high-resolution multi-proxy studies of three cores from about 400 m water depth on the North Icelandic shelf. Benthic and planktonic foraminiferal assemblages and stable isotope values, as well as ice rafted debris (IRD) concentrations, are compared with diatom-based sea-surface water temperatures and the reconstructed mean temperature for the Northern Hemisphere. Changes in surface and bottom water characteristics are mainly due to variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current. The time period between 1200 and around 7–800 cal. (years) BP, including the Medieval Warm Period, was characterized by relatively high bottom and surface water temperatures due to the inflow of Atlantic water masses. After that, a general temperature decrease in the area marks the transition to a period with increased influence of the East Icelandic Current and, at the sea floor, the Norwegian Sea Deep Water. This corresponds to the transition to the Little Ice Age. After about 3–400 cal. BP, the inflow of cold East Icelandic Current was further enhanced. In particular, this had a strong influence on the surface waters, while the sea floor was under some influence of Atlantic water masses, resulting in stratification of the water masses. There is no clear indication of any warming in the area during the last decades.  相似文献   

4.
Two glaciers at Eyjafjallajökull, south Iceland, provide a record of multiple episodes of glacier advance since the Sub-Atlantic period, ca. 2000 yr ago. A combination of tephrochronology and lichenometry was applied to date ice-marginal moraines, tills and meltwater deposits. Two glacier advances occurred before the 3rd century AD, others in the 9th and 12th centuries bracketing the Medieval Warm Period, and five groups of advances occurred between AD 1700 and 1930, within the Little Ice Age. The advances of Eyjafjallajökull before the Norse settlement (ca. AD 870) were synchronous with other glacier advances identified in Iceland. In contrast, medieval glacier advances between the 9th and 13th centuries are firmly identified for the first time in Iceland. This challenges the view of a prolonged Medieval Warm Period and supports fragmentary historical data that indicate significant medieval episodes of cooler and wetter conditions in Iceland. An extended and more detailed glacier chronology of the mid- and late Little Ice Age is established, which demonstrates that some small outlet glaciers achieved their Little Ice Age maxima around AD 1700. While Little Ice Age advances across Iceland appear to synchronous, the timing of the maximum differs between glacier type and region.  相似文献   

5.
Paleolimnological techniques were used to identify environmental changes in and around Lake Dudinghausen (northern Germany) over the past 4800 yr. Diatom-inferred total phosphorus (DI-TP) changes identify four phases of high nutrient levels (2600-2200 BC, 1050-700 BC, 500 BC-AD 100 and AD 1850-1970). During these high DI-TP phases, fossil pollen, sediment geochemistry and archaeological records indicate human activities in the lake catchment. Although the same paleo-indicators suggest increased human settlement and agriculture activity during the late Slavonic Age, the Medieval Time and the Modern Time (AD 1000-1850), DI-TP levels were low during this period. In the sediments, iron and total phosphorus were high from ∼AD 100 to 1850, likely due to increased inflow of iron-rich groundwater into the lake. Increased iron input would have lead to a simultaneous binding and precipitation of phosphate in the upper sediment and overlying water column. As a result, anthropogenic impact on Lake Dudinghausen was masked by these phosphorus-controlling processes from AD 1000 to 1850 and was not evident by means of DI-TP. In accordance with fossil pollen, sediment geochemistry and limited archaeological records, DI-TP levels were low from AD 100-1000. Groundwater levels likely rose during this period as the climate gradually changed toward colder and/or moister conditions. Such climate change likely led to reduced settlement activities and forest regeneration in the catchment area. Our results are concordant with similar studies from central Europe which indicate rapid decreasing settlement activities from AD 100 to 1000.  相似文献   

6.
A high-resolution record of paleostorm events along the French Mediterranean coast over the past 7000 years was established from a lagoonal sediment core in the Gulf of Lions. Integrating grain size, faunal analysis, clay mineralogy and geochemistry data with a chronology derived from radiocarbon dating, we recorded seven periods of increased storm activity at 6300–6100, 5650–5400, 4400–4050, 3650–3200, 2800–2600, 1950–1400 and 400–50 cal yr BP (in the Little Ice Age). In contrast, our results show that the Medieval Climate Anomaly (1150–650 cal yr BP) was characterised by low storm activity.The evidence for high storm activity in the NW Mediterranean Sea is in agreement with the changes in coastal hydrodynamics observed over the Eastern North Atlantic and seems to correspond to Holocene cooling in the North Atlantic. Periods of low SSTs there may have led to a stronger meridional temperature gradient and a southward migration of the westerlies. We hypothesise that the increase in storm activity during Holocene cold events over the North Atlantic and Mediterranean regions was probably due to an increase in the thermal gradient that led to an enhanced lower tropospheric baroclinicity over a large Central Atlantic–European domain.  相似文献   

7.
From temporal variation in δ18O in Globigerinoides ruber and G. sacculifer and geochemical indices of weathering/erosion (chemical index of alteration, Al and Ti), we infer rapid southwest monsoon (SWM) deterioration with dwindling fluvial and detrital fluxes at ca. 450–650, 1000 and 1800–2200 cal. a BP during the late Holocene. We have evaluated the role of solar influx (reconstructed) and high‐latitude climate variability (archived in GRIP and GISP‐2 cores) on SWM precipitation. Broadly, our δ18O climate reconstruction is concordant with GRIP and GISP‐2, and supports a teleconnection through atmospheric connection between the SWM and the North Atlantic climate – albeit temporal extents of the Little Ice Age and Medieval Warm Period from high latitude are not entirely coeval. Moreover, there is a humid climate and enhanced precipitation during the terminal stages of the Little Ice Age. The medieval warming (ca. AD 800–1300) is not synchronous either, and is punctuated by an arid event centred at 1000 a BP. Although the delineation of the specific influence of solar influx on SWM precipitation is elusive, we surmise that SWM precipitation is a complex phenomenon and local orography along southwestern India may have a role on the entrapment of moisture from the southwest trade winds, when these hit land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Ribeiro, S., Moros, M., Ellegaard, M. & Kuijpers, A. 2012 (January): Climate variability in West Greenland during the past 1500 years: evidence from a high‐resolution marine palynological record from Disko Bay. Boreas, Vol. 41, pp. 68–83. 10.1111/j.1502‐3885.2011.00216.x. ISSN 0300‐9483. Here we document late‐Holocene climate variability in West Greenland as inferred from a marine sediment record from the outer Disko Bay. Organic‐walled dinoflagellate cysts and other palynomorphs were used to reconstruct environmental changes in the area through the last c. 1500 years at 30–40 years resolution. Sea ice cover and primary productivity were identified as the two main factors driving dinoflagellate cyst community changes through time. Our data provide evidence for an opposite climate trend in West Greenland relative to the NE Atlantic region from c. AD 500 to 1050. For the same period, sea‐surface temperatures in Disko Bay are out‐of‐phase with Greenland ice‐core reconstructed temperatures and marine proxy data from South and East Greenland. This is probably governed by an NAO‐type pattern, which results in warmer sea‐surface conditions with less extensive sea ice in the area for the later part of the Dark Ages cold period (c. AD 500 to 750) and cooler conditions with extensive sea ice inferred for the first part of the Medieval Climate Anomaly (MCA) (c. AD 750 to 1050). After c. AD 1050, the marine climate in Disko Bay becomes in‐phase with trends described for the NE Atlantic, reflected in the warmer interval for the remainder of the MCA (c. AD 1050–1250), followed by cooling towards the onset of the Little Ice Age at c. AD 1400. The inferred scenario of climate deterioration and extensive sea ice is concomitant with the collapse of the Norse Western Settlement in Greenland at c. AD 1350.  相似文献   

9.
Palynological data on major Holocene climatic events in NW Iberia   总被引:6,自引:0,他引:6  
Three NW Iberia Cantabrian Mountain pollen records are presented. They reflect the main Holocene climatic shifts in the North Atlantic region as recorded in the isotopic data from Greenland ice, Irish speleothems and reconstructed sea surface temperatures. Two brief forest regression episodes reconstructed from pollen may be synchronous with GH-11.2 and GH-8.2 events. At mid-altitude, two woodland expansion phases (7000-6000 14C yr BP and 4000-2500 14C yr BP) are separated by a phase of heaths and peat deposits. Major woodland declines occurred during the Galician-Roman Period (which includes the Bronze Age, the Iron Age and the Roman occupation) and from the end of the Medieval Period. The pollen data, backed up by archaeological and historical sources, suggest climatic impact of the Iron Age Cold Period, but are indecisive concerning the Little Ice Age. However, the pollen records do not support any significant 'Neoglacial' period (4000-3000 14C yr BP) influence on NW Iberia.  相似文献   

10.
High‐resolution multi‐proxy analyses of a sediment core section from Lake Jeserzersee (Saissersee) in the piedmont lobe of the Würmian Drau glacier (Carinthia, Austria) reveal pronounced climatic oscillations during the early late glacial (ca. 18.5–16.0k cal a BP). Diatom‐inferred epilimnetic summer water temperatures show a close correspondence with temperature reconstructions from the adjacent Lake Längsee record and, on a hemispheric scale, with fluctuations of ice‐rafted debris in the North Atlantic. This suggests that North Atlantic climate triggered summer climate variability in the Alps during the early late glacial. The expansion of pine (mainly dwarf pine) between ca. 18.5 and 18.1k cal a BP indicates warming during the so‐called ‘Längsee oscillation’. The subsequent stepwise climate deterioration between ca. 18.1 and 17.6k cal a BP culminated in a tripartite cold period between ca. 17.6 and 16.9k cal a BP with diatom‐inferred summer water temperatures 8.5–10 °C below modern values and a shift from wet to dry conditions. This period probably coincides with a major Alpine glacier advance termed the Gschnitz stadial. A warmer interval between ca. 16.9 and 16.4k cal a BP separates this cold phase from a second, shorter and less pronounced cold phase between ca. 16.4 and 16.0k cal a BP, which is thought to correlate with the Clavadel/Senders glacier advance in the Alps. The following temperature increase, coupled with wet (probably snow‐rich) conditions, caused the expansion of birch during the transition period to the late glacial interstadial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The Eurogeul is the shipping-lane gully in front of Rotterdam harbour. Due to the combination of suction-dredging and fishing activities, diverse faunae are found on its bottom. This paper briefly describes the fauna, consisting of 13 terrestrial mammals and six marine mammal species. Radiocarbon dating gave two time-periods from which the bones originate: ca. 37,500–48,500 BP, and ca. 7–8000 BP. Pollen sampling gave similar results (respectively, an interstadial before the Last Glacial Maximum, and the Early Holocene Boreal period). Human artefacts dating from the Boreal period add to our understanding of the Quaternary history of the southern North Sea area.  相似文献   

12.
The Outer Banks barrier islands of North Carolina, USA, contain a geologic record of inlet activity that extends from ca. 2200 cal yr BP to the present, and can be used as a proxy for storm activity. Optically stimulated luminescence (OSL) dating (26 samples) of inlet-fill and flood tide delta deposits, recognized in cores and geophysical data, provides the basis for understanding the chronology of storm impacts and comparison to other paleoclimate proxy data. OSL ages of historical inlet fill compare favorably to historical documentation of inlet activity, providing confidence in the technique. Comparison suggests that the Medieval Warm Period (MWP) and Little Ice Age (LIA) were both characterized by elevated storm conditions as indicated by much greater inlet activity relative to today. Given present understanding of atmospheric circulation patterns and sea-surface temperatures during the MWP and LIA, we suggest that increased inlet activity during the MWP responded to intensified hurricane impacts, while elevated inlet activity during the LIA was in response to increased nor'easter activity. A general decrease in storminess at mid-latitudes in the North Atlantic over the last 300 yr has allowed the system to evolve into a more continuous barrier with few inlets.  相似文献   

13.
A principal method for studying past hydroclimatic change is the reconstruction of paleo-lake levels. Here, we provide high-resolution lake-level records from New Long Pond and Rocky Pond in southeastern Massachusetts, which each contain evidence for multiple, sub-centennial-to-millennial scale low stands during the transition between the Late Pleistocene (15.0 ka) and Middle Holocene (ca 7.0 ka). Data from New Long Pond also demonstrate sedimentary evidence for a drop in water levels in the early to mid AD 20th century, when long-term trends in instrumental data show lower-than-average precipitation in the northeastern United States. Local data show the most precipitous declines in precipitation and groundwater levels are concurrent with the most severe drought in the AD 1960s, which occurred during a period of low sea-surface temperatures in the western North Atlantic. Ground penetrating radar and sediment core data indicate five intervals with numerous paleo-shoreline deposits between ca 15.0 and 7.0 ka, similar to the layer deposited in the AD 1960s. Many of the intervals of low lake levels coincide with proposed meltwater release events or abrupt climate oscillations in the circum North Atlantic. For example, we document at least three low stands during the Younger Dryas (12.9–11.6 ka) and in association with the “9.2” and “8.2” ka events. The combined evidence of (1) concurrent paleo-droughts in southeastern New England with documented North Atlantic abrupt cooling events and (2) recent drought with the modern association of low sea-surface temperatures indicates that freshening and cooling of the western North Atlantic is a viable mechanism for decreasing moisture within the region. Large-scale changes in seasonality and ice sheet extent also may have increased the susceptibility of the northeast to dry conditions triggered by changes in the North Atlantic.  相似文献   

14.
The western and northern Svalbard continental margins (European Arctic) are environmentally sensitive areas that are dependent on the northward flow of Atlantic Water, the largest heat source of the Arctic Ocean. Two marine sediment records from the Svalbard shelf: Kongsfjorden Trough and Hinlopen Trough, were analysed with regard to the benthic foraminiferal content and lithology to assess the palaeoceanographic evolution during the past two millennia with decadal to multi‐decadal temporal resolution. In both records, an overall gradual decrease of E. excavatum f. clavata during the past two millennia reflects a change towards generally warmer and less glacially influenced conditions, presumably related to enhanced inflow of Atlantic Water (AW). The influence of AW also varied on centennial time scales, as evidenced by faunal and sedimentary shifts occurring almost synchronously at both locations. The period from AD 700 to 1200 was characterized by enhanced inflow of AW, followed by the development of highly productive oceanographic fronts at both localities from AD 1200 to 1500. In contrast, the subsequent interval (AD 1500–1900) shows particularly harsh conditions in the Hinlopen Trough, with significantly reduced foraminiferal flux and sediment input related to perennial sea ice cover. In Kongsfjorden, less severe conditions were observed, indicating that the AW advection continued. The synchronicity of changes in both records demonstrates the effect of the variability in inflow of AW to the Svalbard region during the past 2000 years. Moreover, the records seem to follow climate anomalies, for example the Little Ice Age and Medieval Warm Period, found in the North Atlantic realm.  相似文献   

15.
A large ice sheet still covered almost all of Maine and eastern New England until ca. 15 cal ka BP, reaching south of 45 °S, despite rising summer insolation intensity and major ice recession elsewhere outside the North Atlantic region. Furthermore, the well-studied moraine belt along eastern coastal Maine, including the prominent Pineo Ridge delta/moraine complex and Pond Ridge moraine, indicates repeated readvances and stillstands between ca. 16 and 15 cal ka BP. This moraine belt reflects a considerable ice sheet response over eastern North America during this time period, coeval with the latter half of the European Oldest Dryas period. Moraine deposition was concurrent with reduction or elimination of North Atlantic meridional overturning, starting with the earlier onset of peak IRD and Heinrich Event 1 (HE-1). The existing 14C chronology suggests that the coastal moraine belt and the persistence of the ice sheet until ∼ 15 cal ka BP was a response to the severe cooling of the North Atlantic region after ∼ 17 cal ka BP.  相似文献   

16.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents biostratigraphical and stable isotope data obtained from core CM92–43, which was recovered from the central Adriatic as part of a comprehensive investigation of the palaeoenvironmental history of the basin. The data span the period of the Last Glacial–Holocene (LG–H) transition (ca. 18000 to 8000 GRIP ice-core yr BP). Regional biozones are defined on the basis of characteristic assemblages of planktic Foraminifera, and these are compared with other foraminiferal biostratigraphical schemes from the southern Adriatic and the Tyrrhenian Sea. Variations in relative abundance of selected planktic Foraminifera and in selected pollen types are shown alongside variations in δ18O and δ13C obtained from Globigerina bulloides and relative abundance of Globigerinoides ex. gr. ruber. The data are compared with the GRIP ice-core record and the event stratigraphy scheme based on this record, and it is concluded that the climate forcing mechanisms that controlled climate variations in the North Atlantic region during the LG–H transition also extended their influence into the Mediterranean region over the same period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Sum probability analysis of 1275 radiometric ages from 608 archaeological sites across northern and central Australia demonstrates a changing archaeological signature that can be closely correlated with climate variability over the last 2 ka. Results reveal a marked increase in archaeological records across northern and central Australia over the last 2 ka, with notable declines in western and northern Australia between ca. AD 700 and 1000 and post‐AD 1500 – two periods broadly coeval with the Medieval Climatic Anomaly and the Little Ice Age as they have been documented in the Asia–Pacific region. Latitudinal and longitudinal analysis of the dataset suggests the increase in archaeological footprint was continent wide, while the declines were greatest from 9 to 20° S, 110 to 135° E and 143 to 150° E. The change in the archaeological data suggests that, combined with an increase in population over the late Holocene, a disruption or reorganisation of pre‐European resource systems occurred across Australia between ca. AD 700 and 1000 and post‐AD 1500. These archaeological responses can be broadly correlated with transitions of the El Niño–Southern Oscillation (ENSO) mean state on a multi‐decadal to centennial timescale. The latter involve a shift towards the La Niña‐like mean state with wetter conditions in the Australian region between AD 700 and 1150. A transition period in ENSO mean state occurred across Australia during AD 1150–1300, with persistent El Niño‐like and drier conditions to ca. AD 1500, and increasing ENSO variability post‐AD 1500 to the present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A ca. 1400-yr record from a raised bog in Isla Grande, Tierra del Fuego, Argentina, registers climate fluctuations, including a Medieval Warm Period, although evidence for the ‘Little Ice Age’ is less clear. Changes in temperature and/or precipitation were inferred from plant macrofossils, pollen, fungal spores, testate amebae, and peat humification. The chronology was established using a 14C wiggle-matching technique that provides improved age control for at least part of the record compared to other sites. These new data are presented and compared with other lines of evidence from the Southern and Northern Hemispheres. A period of low local water tables occurred in the bog between A.D. 960-1020, which may correspond to the Medieval Warm Period date range of A.D. 950-1045 generated from Northern Hemisphere tree-ring data. A period of cooler and/or wetter conditions was detected between ca. A.D. 1030 and 1100 and a later period of cooler/wetter conditions estimated at ca. cal A.D. 1800-1930, which may correspond to a cooling episode inferred from Law Dome, Antarctica.  相似文献   

20.
The North Atlantic craton of southwestern Greenland hosts several orogenic gold occurrences, although, to date, none is in production. Four gold provinces are distinguished and include Godthåbsfjord, Tasiusarsuaq, Paamiut, and Tartoq. In the Godthåbsfjord gold province, the hypozonal gold occurrences are aligned along the major ca. 2660–2600 Ma Ivinnguit fault. Orogenic gold mineralization correlates temporally with, and is related to, ductile deformation along this first-order structure. The northern part of the Tasiusarsuaq gold province is characterized by small hypozonal gold occurrences that are controlled by 2670–2610 Ma folds and shear zones. Auriferous fluids were focused into the structures in both gold provinces during west-directed accretion of the Kapisilik terrane (2650–2580 Ma) to the already amalgamated terranes of the North Atlantic craton. In the southern part of the Tasiusarsuaq gold province, hypozonal gold mineralization is hosted in back-thrusts (Sermilik prospect) and thrusts (Bjørnesund prospect) that formed at 2740 Ma and 2860–2830 Ma, respectively. The deformation is related to the ca. 2850 Ma accretion of the Sioraq block and the Tasiusarsuaq terrane, and the 2800–2700 Ma accretion of the Tasiusarsuaq terrane and the Færingehavn and Tre Brødre terranes.Mesozonal orogenic gold mineralization is hosted in an accretionary complex in the Paamiut and Tartoq gold provinces. Gold occurrences cluster over a strike extent of approx. 40 km in thrusts and complex strike-slip settings in lateral ramps. The timing of the E-vergent terrane accretion in both areas is unknown, and could either be at ca. 2850 Ma or 2740 Ma. In the eastern part of the Paamiut gold province, quartz veins and associated alteration zones were overprinted by granulite facies metamorphism and show evidence for partial melting. These outermost parts of the accretionary complex were involved in burial-exhumation tectonics during crustal accretion.Mainly three different orogenic stages related to gold mineralization are distinguished in the North Atlantic craton between ca. 2850 Ma and 2610 Ma. These are generally accretionary tectonic episodes, and gold mineralization is hosted either in reactivated fault systems between terranes or accretionary complex structures along the deformed cratonic margin. The larger orogenic gold occurrences formed at ca. 2740–2600 Ma that appears to be a period of orogenic gold mineralization globally, although significant gold resources in the North Atlantic craton have yet to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号