首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The transverse structure of exchange flows and lateral flows as well as their relationship to the subtidal variability are investigated in a subtropical inlet, Ponce de Leon Inlet, Florida. Two surveys were executed during different phases of the tidal month to determine the spatial structure of subtidal exchange flows. Data from fixed moorings were used to depict the temporal variability of the spatial structure established in the surveys. The data suggested a tidally rectified pattern of net outflow in the channel and inflow over shoals with a negligible influence of streamwise baroclinic pressure gradients on the dynamics and slight modifications due to the wind. Onshore winds strengthened net inflows but weakened net outflows, rarely reversing them, while offshore winds increased net outflows and weakened net inflows. Curvature effects were found to be important in modifying secondary circulations. Slight modifications to the secondary flows were also caused by stream-normal baroclinicity during one survey. Most important, the intensity of the exchange flows was modulated by tides, with the largest exchange flows developing in response to the strongest tidal rectification of spring tides.  相似文献   

2.
The response of the density-driven circulation in the Chesapeake Bay to wind forcing was studied with numerical experiments. A model of the bay with realistic bathymetry was first applied to produce the density-driven flow under average river discharge and tidal forcing. Subsequently, four spatially uniform wind fields (northeasterly, northwesterly, southwesterly, and southeasterly) were imposed to examine the resulting cross-estuary structure of salinity and flow fields. In general, northeasterly and northwesterly winds intensified the density-driven circulation in the upper and middle reaches of the bay, whereas southeasterly and southwesterly winds weakened it. The response was different in the lower bay, where downwind flow from the upper and middle reaches of the bay competed with onshore/offshore coastal flows. Wind remote effects were dominant, over local effects, on volume transports through the bay entrance. However, local effects were more influential in establishing the sea-level slopes that drove subtidal flows and salinity fields in most of the bay. The effect of vertical stratification on wind-induced flows was also investigated by switching it off. The absence of stratification allowed development of Ekman layers that reached depths of the same order as the water depth. Consequently, bathymetric effects became influential on the homogeneous flow structure causing the wind-induced flow inside the bay to show a marked transverse structure: downwind over the shallow areas and upwind in the channels. In the presence of stratification, Ekman layers became shallower and the wind-induced currents showed weaker transverse structure than those that developed in the absence of stratification. In essence, the wind-driven flows were horizontally sheared under weak stratification and vertically sheared under stratified conditions.  相似文献   

3.
Spatial and temporal variability of the subtidal exchange flow at West Pass, an inlet at the entrance to a subtropical lagoon (St. Andrew Bay, Florida), was studied using moored and towed current velocity profiles and hydrographic data. Towed and hydrographic measurements were captured over one diurnal tidal cycle to determine intratidal and spatial changes in flow. Hydrographic profiles over the tidal cycle showed that tidal straining modified density stratification asymmetrically, thus setting up the observed mean flow within the inlet. During the towed survey, the inlet's mean flow had a two-layer exchange structure that was moderately frictional and weakly influenced by Coriolis accelerations. Moored current profiles revealed the additional contribution to the dynamics from centrifugal accelerations. Along channel residual flows changed between unidirectional and exchange flow, depending on the forcing from the along-estuary wind stress and, to a lesser extent, the spring–neap tidal cycle. Increases in vertical shear in the along channel subtidal flow coincided with neap tides and rain pulses. Lateral subtidal flows showed the influence on the dynamics of centrifugal accelerations through a well-developed two-layer structure modulated in magnitude by the spring–neap tidal cycle.  相似文献   

4.
《Continental Shelf Research》1998,18(10):1157-1177
The spatial and temporal variability of water entering and leaving the Chesapeake Bay estuary was determined with a spatial resolution of 75 m. The four cruises during which the observations were made took place under different conditions of freshwater discharge, tidal phase, and wind forcing. The tidal variability of the flows was dominated by the semidiurnal constituents that displayed greatest amplitudes and phase lags near the surface and in the channels that lie at the north and south sides of the entrance. The subtidal variability of the flows was classified into two general scenarios. The first scenario occurred during variable or persistently non-southwesterly winds. Under these conditions there was surface outflow and bottom inflow in the two channels, inflow over the shoal between the two channels, and possible anticyclonic gyre formation over the shoal. The flow pattern in the channels was produced by gravitational circulation and wind forcing. Over the shoal it was caused by tidal rectification and wind forcing. The second scenario occurred during persistently southwesterly winds. The anticyclonic gyre over the shoal vanished suggesting that wind forcing dominated the tidal rectification mechanism over the shoal, while gravitational circulation and wind forcing continued to cause the flows in the channels. In both scenarios, most of the volume exchange took place in the channels.  相似文献   

5.
The long-term variability of the non-tidal circulation in Southampton Water, a partially mixed estuary, was investigated using 71-day acoustic Doppler current profiler (ADCP) time series. The data show evidence that the spring–neap tidal variability of the turbulent mixing modulates the strength of the non-tidal residual circulation, with subtidal neap tide surface flows reaching 0.12 m s–1 compared to <0.05 m s–1 at spring tides. The amplitude of the neap-tide events in this non-tidal circulation is shown to be related to a critical value of the tidal currents, illustrating the strong dependence on tidal mixing. The results suggest that the dominant mechanism for generating these neap-tide circulation events is the baroclinic forcing of the horizontal density gradient, rather than barotropic forcing associated with ebb-induced periodic stratification. While tidal turbulence is thought to be the dominant control on this gravitational circulation, there is evidence of the additional effect of wind-driven mixing, including the effects of wind fetch and possibly wave development with along-estuary winds being more efficient at mixing the estuary than across-estuary winds. Rapid changes in atmospheric pressure also coincided with fluctuations in the gravitational circulation. The observed subtidal flows are shown to be capable of rapidly flushing buoyant material out of the estuary and into the coastal sea at neap tides.Responsible Editor: Iris Grabemann  相似文献   

6.
Residual, or tidally averaged, circulation in fjords is generally assumed to be density driven and two layered. This circulation consists of a thin surface layer of outflow and a thick bottom layer of sluggish inflow. However, development of different vertical structures in residual circulation in fjords can arise from wind, remote, and tidal forcing that may modify the two-layer circulation. Particularly, theoretical results of tidal residual flows in homogeneous semienclosed basins indicate that their vertical structure is determined by the dynamical depth of the system. This dynamical depth can be considered as the ratio between the water column depth and the depth of frictional influence in an oscillatory flow (inverse of Stokes number). When the frictional depth occupies the entire water column, the tidal residual flow is one layered as in shallow basins. But when the frictional depth is only a small portion of the water column (>6 times smaller), the tidal residual is three layered. In relatively deep fjords (say deeper than 100 m), where frictional depths typically occupy a small portion of the water column, the tidal residual flow is expected to be three layered. Ample observational evidence presented here shows a three-layered exchange flow structure in fjords. On the basis of observational and theoretical evidence, it is proposed that the water exchange structure in deep fjords (more than six frictional layers deep, or inverse Stokes number >6) is tidally driven and is three layered. The tidally driven three-layer structure of residual flows could be regarded in some cases as the fundamental structure. However, this structure will only be observed sporadically as it will be masked by wind forcing, remote forcing from the ocean, and freshwater pulses.  相似文献   

7.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

8.
9.
Measurements of current velocity profiles during and after cresting of the Suwannee River in Northern Florida, USA, were used to investigate the effects of increased river discharge on subtidal flows near the estuarine transition with the Gulf of Mexico. Three moored velocity profilers were deployed across a lower estuary cross-section. The cross-section bathymetry consisted of a channel (∼5.5 m deep) near the western bank of the estuary that shoaled monotonically eastward. Two-layer gravitational exchange developed only in the deepest part of the cross-section during the river cresting and persisted for ∼20 days. After this ∼20-day period, the net flow decreased and was seaward throughout the water column. Net flows outside the channel were seaward throughout the observation period and were modulated by the river pulse. By comparing the estuarine response in the 5.5-m channel to theoretical responses driven by a dynamic balance between pressure gradient and stress divergence, a condition required for two-layered flow was proposed. Gravitational exchange flow should be expected when the ratio of density-driven flow to river-induced flow is greater than 0.23 to 0.28. Smaller values of this ratio should produce unidirectional, seaward flows after a river pulse. Two-layered flows restricted to the channel can be explained also with this ratio because of the sensitivity of density-driven flows to local depth and eddy viscosity. These findings need to be tested against observations in other systems affected by extreme freshwater pulses.  相似文献   

10.
Simultaneous estimation of effects of source, propagation path, and local site amplification was carried out using observed strong motion records in a frequency range from 0.8 to 20 Hz for the purpose of empirical evaluation of the local site effects in different geological conditions in the northwestern part of Turkey. The analyzed data are S-wave portions of 162 accelerograms from 39 shallow events observed at 14 sites of BYTNet array. A spectral separation method was applied to the observed S-wave spectra. The solutions for source spectra, inelasticity factor of propagation path for S-waves (Q s-value), and factor of site amplification at each site were obtained in a least squares sense. In the analysis, we assumed that the factor of the site amplification at a reference site is the same as that of theoretical amplification of S-waves to the soil model whose bottom layer has an S-wave velocity around 2.15 km/s. The estimated Q s-value of the propagation path is modeled as Q s(f)?=?87.4f0.78. The estimated site amplifications are characterized into three groups. The sites in the first group belong to rock site with no dominant peaks at a frequency range of 2 to 10 Hz. The second group of hard soil sites is characterized with moderately dominant peaks at a frequency of 5 Hz. The last group for soft soil sites has common peaks at a frequency of 4 Hz with larger amplitudes than those in the hard soil group. We, then, compare the amplifications with average S-wave velocity in top 30 m of the shallow S-wave profiles and proposed linear empirical formula between them at each frequency. We, furthermore, inverted the observed amplification factors into S-wave velocity and Q s-value profiles of the deep soil over the basement.  相似文献   

11.
Subaqueous pyroclastic flows and ignimbrites: an assessment   总被引:2,自引:0,他引:2  
An assessment of the literature on subaqueous pyroclastic flows and their deposits shows that the term pyroclastic flow is frequently used loosely to describe primary, hot gas-rich pyroclastic flows, mass-flows which resulted from the transformation of gassupported flows into water-supported ones, and secondary mass-flows carrying redeposited pyroclastic debris. Based on subaerial pyroclastic flows, the term pyroclastic flow should be restricted to demonstrably hot, gas-rich mass-flows of pyroclastic debris. Using this definition, very few examples of subaqueous pyroclastic deposits with evidence for hot emplacement and of having been wholly submerged have been described. In the majority of these cases, the evidence for a hot state of emplacement and for the subaqueous nature of the host depositional environment is inadequate. The only unequivocal cases of hot pyroclastic flow deposits with adequate supporting evidence are the Ordovician nearshore, shallow marine ignimbrites of Ireland and Wales, and Miocene ignimbrites of southwest Japan, resulting from the passage of subaerially erupted pyroclastic flows into shallow water. Other possible examples are near-vent dense clast deposits in the Donzurobo Formation of Japan, possible submarine intra-caldera ponded ignimbrite successions in California and Wales, and near-vent pumiceous deposits of Ramsay Island, Wales. All other purported cases are either clearly the result of water-supported mass-flow transportation and deposition (debris avalanches, debris flows, turbidity currents), or lack adequate supporting evidence regarding the heat state or the palaeoenvironment. Only the shallow marine ignimbrites of Ireland and Wales show adequate evidence of welding, but even these could have been nearly wholly exposed above sea-level when welding occurred. We conclude that when pyroclastic flows enter water they are generally disrupted explosively and/or ingest water and transform into water-supported mass-flows, and we suggest the various scenarios in which this occurs. There is no evidence to suggest that welding in wholly subaqueous environments is common.  相似文献   

12.
The spatio-temporal variability of submesoscale eddies off southern San Diego is investigated with two-year observations of subinertial surface currents [O(1) m depth] derived from shore-based high-frequency radars. The kinematic and dynamic quantities — velocity potential, stream function, divergence, vorticity, and deformation rates — are directly estimated from radial velocity maps using optimal interpolation. For eddy detection, the winding-angle approach based on flow geometry is applied to the calculated stream function. A cluster of nearly enclosed streamlines with persistent vorticity in time is identified as an eddy. About 700 eddies were detected for each rotation (clockwise and counter-clockwise). The two rotations show similar statistics with diameters in the range of 5–25 km and Rossby number of 0.2–2. They persist for 1–7 days with weak seasonality and migrate with a translation speed of 4–15 cm s−1 advected by background currents. The horizontal structure of eddies exhibits nearly symmetric tangential velocity with a maximum at the defined radius of the eddy, non-zero radial velocity due to background flows, and Gaussian vorticity with the highest value at the center. In contrast divergence has no consistent spatial shape. Two episodic events are presented with other in situ data (subsurface current and temperature profiles, and local winds) as an example of frontal-scale secondary circulation associated with drifting submesoscale eddies.  相似文献   

13.
The Bras d’Or Lakes (BdOL) are a large, complex and virtually land-locked estuary in central Cape Breton Island of Nova Scotia and one of Canada’s charismatic ecosystems, sustaining ecological and cultural communities unique in many aspects. The BdOL comprise two major basins, many deep and shallow bays, several narrow channels and straits and a large, geologically complex watershed. Predictive knowledge of the water movement within the estuary is a key requirement for effective management and sustainable development of the BdOL ecosystem. A three-dimensional (3D) primitive-equation ocean circulation model is used to examine the estuary’s response to tides, winds and buoyancy forcing associated with freshwater runoff in a series of numerical experiments validated with empirical data. The model results generate intense, jet-like tidal flows of about 1 m s?1 in the channels between the basins and connecting them to the ocean and relatively weak tidal currents in other regions, which agrees well with previous observations and numerical results. Wind forcing and buoyancy forcing associated with river runoff play important roles in generating the significant sub-tidal circulations in the estuary, including narrow channels, deep basins and shallow bays. The circulation model is also used to reconstruct the 3D circulation and temperature-salinity distributions in the summer months of 1974, when current and hydrographic measurements were made at several locations. The sub-tidal circulation in the estuary produced by the model is characterised by wind and barometric set-up and set-down in different sections of the system, and a classic two-layer estuarine circulation in which brackish, near-surface waters flow seaward from the estuary into the Atlantic Ocean, and deep salty waters flow landward through the major channel. The model results reproduce reasonably well the overall features of observed circulation and temperature-salinity fields made in the BdOL in 1974 but generally underestimate the observed currents and density stratification. The model discrepancies reflect the use of spatially mean wind forcing and spatially and monthly mean surface heat flux and the inability of the coarse model horizontal resolution (~500 m) to resolve narrow channels and straits.  相似文献   

14.
Ocean circulation influences nearly all aspects of the marine ecosystem. This study describes the water circulation patterns on time scales from hours to years across Torres Strait and adjacent gulfs and seas, including the north of the Great Barrier Reef. The tridimensional circulation model incorporated realistic atmospheric and oceanographic forcing, including winds, waves, tides, and large-scale regional circulation taken from global model outputs. Simulations covered a hindcast period of 8 years (i.e. 01/03/1997–31/12/2004), allowing the tidal, seasonal, and interannual flow characteristics to be investigated. Results indicated that the most energetic current patterns in Torres Strait were strongly dominated by the barotropic tide and its spring-neap cycle. However, longer-term flow through the strait was mainly controlled by prevailing winds. A dominant westward drift developed in summer over the southeasterly trade winds season, which then weakened and reversed in winter over the northwesterly monsoon winds season. The seasonal flow through Torres Strait was strongly connected to the circulation in the north of the Great Barrier Reef, but showed little connectivity with the coastal circulation in the Gulf of Papua. Interannual variability in Torres Strait was highest during the monsoon period, reflecting variability in wind forcing including the timing of the monsoon. The characteristics of the circulation were also discussed in relation to fine sediment transport. Turbidity level in Torres Strait is expected to peak at the end of the monsoon, while it is likely to be at a low at the end of the trade season, eventually leading to a critically low bottom light level which constitutes a severe risk of seagrass dieback.  相似文献   

15.
16.
Tal Ezer  Lie-Yauw Oey 《Ocean Dynamics》2013,63(2-3):243-263
A high-resolution numerical ocean circulation model of the Bering Sea (BS) is used to study the natural variability of the BS straits. Three distinct categories of strait dynamics have been identified: (1) Shallow passages such as the Bering Strait and the Unimak Passage have northward, near barotropic flow with periodic pulses of larger transports; (2) wide passages such as Near Straits, Amukta Pass, and Buldir Pass have complex flow patterns driven by the passage of mesoscale eddies across the strait; and (3) deep passages such as Amchitka Pass and Kamchatka Strait have persistent deep return flows opposite in direction to major surface currents; the deep flows persist independent of the local wind. Empirical orthogonal function analyses reveal the spatial structure and the temporal variability of strait flows and demonstrate how mesoscale variations in the Aleutian passages influence the Bering Strait flow toward the Arctic Ocean. The study suggests a general relation between the barotropic and baroclinic Rossby radii of deformations in each strait, and the level of flow variability through the strait, independent of geographical location. The mesoscale variability in the BS seems to originate from two different sources: a remote origin from variability in the Alaskan Stream that enters the BS through the Aleutian passages and a local origin from the interaction of currents with the Bowers Ridge in the Aleutian Basin. Comparisons between the flow in the Aleutian passages and flow in other straits, such as the Yucatan Channel and the Faroe Bank Channel, suggest some universal topographically induced dynamics in strait flows.  相似文献   

17.
Three sections of the Candelaria Hills volcanic sequence, west-central Nevada, appear to have recorded parts of two transitional field records or reversal excursions. Paleomagnetic data and / laser fusion sanidine age estimates for pyroclastic rocks and associated flows show that these rocks recorded the unusual field behavior at about 25.7 Ma and about 23.8 Ma. Fifteen sites yield northeast declination, moderate to shallow negative inclination mean directions and 16 sites yield west to southwest declination, moderate negative inclination directions. Both populations of site mean directions, representing a total of 12 independent eruptive units, are highly discordant to a time-averaged late Tertiary field direction, and neither can be explained by a geologically reasonable magnitude of vertical axis rotation. Virtual paleomagnetic poles (VGPs), estimated from the directional data, lie at low to intermediate latitudes; 29 of the 31 flows at intermediate latitudes (<60°), and 11 at very low latitudes (<30°). Two well-grouped VGP clusters are defined by these data with each cluster roughly corresponding to one of the age groups. Stratigraphically corrected VGPs from most of the 23.8 Ma group roughly cluster at intermediate to low latitudes at about 150°E longitude. The cluster at about 150°E corresponds to VGP clusters that have been interpreted to reflect a long lasting near-dipole configuration during several field reversals. The second stratigraphically corrected cluster lies at intermediate to low latitudes at about 80°E longitude and, notably, is defined by pyroclastic flows of the 25.7 and 23.8 Ma age groups. The VGP data at about 80°E do not fall into any previously identified preferred longitudinal band, however, they are consistent with data from some sedimentary records of reversal excursions in western North America. We recognize that the VGPs returned to a preferred location in both age populations, which we interpret as a preferred directional position, thus reflecting a potentially stable non-dipole component during a complete reversal or a reversal excursion. The observation that the VGPs maintained a preferred location during separate high amplitude events supports the hypothesis that preferred VPG clusters and thus persistent non-dipole field components can factor into the behavior of the geomagnetic field during full reversals or reversal excursions.  相似文献   

18.
The effects of local and remote wind forcing of water level heights in the Virginia Coast Reserve (VCR) are examined in order to determine the significant forces governing estuarine motions over subtidal time scales. Recent (1996–2008) data from tide and wind stations in the lagoon, a tide station to the north at Sandy Hook, NJ, and one offshore wind station at the Chesapeake Light Tower are examined. Sea surface height spectrum calculations reveal significant diurnal and semidiurnal tidal effects along with subtidal variations, but a suppressed inertial signal. Sea-surface heights (SSH) with 2–5 day periods at Wachapreague, VA are coherent with those at Sandy Hook and lag them in time, suggesting that southward-propagating continental shelf waves provide subtidal variability within the lagoon. The coherence between lagoon winds and sea surface height, as well as between winds and cross-lagoon sea height gradient, were significant at a relatively small number of frequency and wind direction combinations. The frequencies at which this wind forcing occurs are the tidal and subtidal bands present to the north, so that lagoon winds selectively augment existing SSH signals, but do not generate them. The impact of the wind direction is closely related to the geometry of the lagoon and bounding landmasses. The effect of wind stress is also constrained by geometry in affecting the cross-lagoon water height gradient. Water levels at subtidal frequencies are likely forced by a combination of local wind forcing, remote wind forcing and oceanic forcing modified by the complex topography of the lagoon, shelf, and barrier islands.  相似文献   

19.
喻畑  李小军 《地震学报》2012,34(5):621-632
基于强震动观测台钻孔数据, 统计得到了四川、 甘肃地区20 m深的浅硬土层场地平均剪切波速模型. 通过与美国加州地区的波速模型对比, 结合四川、 甘肃地区地震预报的地壳模型, 延拓剪切波速模型至40 km. 应用四分之一波长法计算了浅硬土层场地的平均场地放大系数. 利用场地放大系数, 消除13次余震中浅硬场地的台站场地响应, 反演了龙门山断层上、 下盘的介质品质因子以及13次余震的有效应力降. 通过与普通土层场地的强震动记录对比, 对浅硬土层场地的放大系数进行调整, 得到了深厚土层场地的平均放大系数.   相似文献   

20.
Linear sandbanks are located globally in areas where there are strong currents and an abundance of sand. In the recent years, these sandbanks have become of strategic interest as a potential source of marine aggregates (sand and gravel) and mineral deposits. They form the seaward boundary of the nearshore zone and therefore are important for the stability of the coastal system. They also commonly reach the sea surface and thus pose a threat to navigation. Headland-associated linear sandbanks are a specific type of sandbanks which are located in the lee of coastal topographic features such as headlands and islands. Interaction between tidal currents and topographic features generate complex three-dimensional circulation patterns that significantly influence the distribution of sediments in the vicinity of the feature. Field and numerical model investigations of the three-dimensional flow structure have been undertaken on the Levillain Shoal, a headland-associated linear sandbank present in the lee of Cape Levillain (Shark Bay, Western Australia). The field data indicated the presence of secondary flows near the tip of the cape and around the bank which were re-produced in the numerical simulations. Numerical results have shown that residual eddies are not representative of the sediment transport and that secondary currents enhance the convergence of sediment towards the sandbank. Maintenance processes have been investigated. Sediment transport paths near the cape and the bank indicate that the sandbank is part of a sand circulation cell where the sand is circulating around the bank with exchanges between the sandbank and the headland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号