首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A worldwide data set of major element and sulfur analyses of undegassed lavas, pumices, and melt inclusions from 14 volcanic locations was selected to investigate the compositional effects on sulfur solubility in magmas. We utilized analyses on calc-alkaline, alkaline, and tholeiitic rocks, with a range of 3400 ppm S variation. There is a strong correlation between chemical composition and the sulfur concentration: the less silicic and the more alkaline the rocks are, the more dissolved sulfur they can carry. Also, sulfur concentration is higher in rocks that represent less polymerized melts. Elemental correlations between FeO and S, well-defined for tholeiites, do not hold for alkaline melts. The compositional effects are at least as important as the better-known pressure, temperature, and f(O2) dependencies.  相似文献   

2.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   

3.
Fluorite stability in silicic magmas   总被引:6,自引:1,他引:5  
Recent experimental evidence is used to assess the conditions under which fluorite forms an early crystallising phase in silicic magmas. Fluorite solubility primarily depends on the (Na + K)/Al balance in the coexisting silicic melt, reaching a minimum in metaluminous melts. It can display reaction relationships with topaz and titanite, depending on changes in melt composition during crystallisation. An empirical model of fluorite stability in Ca-poor peralkaline rhyolite melts is derived and applied to selected rocks:
At the F contents preserved in most silicic rocks, fluorite should normally appear late in the crystallisation sequence, in agreement with petrographic observations. During fluid-absent crustal anatexis, fluorite should melt at a relatively early stage and restitic fluorite is unlikely to persist during prolonged melting. Fluorite may, however, exert a decisive control on the alkali/alumina balance of sub-aluminous anatectic melts and it can affect the liquid line of descent of silicic magmas once extracted from source.Editorial responsibility: J. Hoefs  相似文献   

4.
Data on mineral-hosted melt, fluid, and crystalline inclusions were used to study the composition and evolution of melts that produced rocks of Changbaishan Tianchi volcano, China–North Korea, and estimate their crystallization parameters. The melts crystallized within broad ranges of temperature (1220–700°C) and pressure (3100–1000 bar), at a drastic change in the redox potential: Δ log \(f_{O_2}\) from NNO + 0.92 to +1.42 for the basalt melts, NNO –1.61 to –2.09 for the trachybasaltic andesite melts, NNO –2.63 to –1.89 for the comendite melts, and NNO –1.55 to –3.15 for the pantellerite melts. The paper reports estimates of the compositions of melts that produced the continuous rock series from trachybasalt to comendite and pantellerite. In terms of trace-element concentrations, all of the mafic melts are comparable with OIB magmas. The silicic melts are strongly enriched in trace elements and REE. The most strongly enriched melts contain concentrations of certain elements almost as high as in ores of these elements. The paper reports data on H2O concentrations in melts of different composition. It is demonstrated that the variations in the H2O concentrations were controlled by magma degassing. Data are reported on the Sr and Nd composition of the rocks. The deviations in the Sr isotopic composition are proportional to the 87Sr/86Sr ratio and could be produced in a melt with a high enough 87Sr/86Sr ratio during a geologically fairly brief time period. The evolution of melts that produced rocks of the volcano was controlled by crystallization differentiation of the parental basalt magmas at insignificant involvement of melt mixing and liquid immiscibility of silicate and sulfide melts. The alkaline salic rocks were generated in shallow-sitting (13–3.5 km) magmatic chambers in which the melts underwent profound differentiation that gave rise to pantellerites and comendites strongly enriched in trace elements (Th, Nb, Ta, Zr, and REE). Data on the composition of the magmas and parameters of their derivation are used to develop a generalized petrologic–geodynamic model for the origin of Changbaishan Tianchi volcano.  相似文献   

5.
Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3?wt.%, FeO* contents up to 17?wt.% and SiO2 contents ~65?wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5?wt.% Al2O3, 13?wt.% FeO* and 66?±?2?wt.% SiO2. The dominant fractionating assemblage is alkali feldspar?+?fayalite?+?hedenbergite?+?oxides?±?quartz. Feldspar – melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.  相似文献   

6.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

7.
The investigation of melt inclusions in the minerals of volcanic rocks from the massive sulfide deposits of Siberia and the Urals revealed some specific features in the development of their magmatic ore systems. It was shown that the petrochemical and rare earth element compositions of melt inclusions reflect the geodynamic conditions of their formation: island arc conditions for the massive sulfide deposits of Rudny Altai, eastern Tuva, and the Salair Range and a back arc basin environment for the Yaman-Kasy deposit. The silicic melts of inclusions from the volcanic rocks of massive sulfide deposits show some specific features with respect to the contents of volatile components. In all of the ore deposits studied, fluorine content was always low (0.03–0.08 wt %), whereas chlorine content (0.13–0.28 wt %) was higher than the average value for silicic melts (0.17 wt %). There is a strong differentiation of water content in melt inclusions, both between deposits and between various volcanics from a single deposit. Ore-bearing melts show the highest water contents of 3.34–4.07 wt %. High Cu contents in the silicic melts of the Yubileinoe and Kyzyl-Tashtyg deposits (up to 7118 and 3228 ppm, respectively) may indicate the affinity of some ore components to particular silicic magmas. This is supported by the elevated contents of Cu in the porphyry Cu deposits of Romania (Valea Morii), Mongolia (Bayan Ula), and Bolivia. On the other hand, the silicic melts of inclusions from the molybdenum-uranium deposit of the Strel’tsovka ore field show high contents of another group of ore components (U and F).  相似文献   

8.
In this paper, we discuss the formation conditions of rhyolites and results of their interaction with later portions of basic magmas on the basis of the investigation of melt and fluid inclusions in minerals from a rhyolite xenolith and host neovolcanic basalts of the Cleft segment of the Juan de Fuca Ridge. In terms of bulk chemistry and the compositions of melt inclusions in pyroxene and olivine phenocrysts, the basic rocks of the southern part of this segment are typical MOR basalts. Their olivine, clinopyroxene, and plagioclase crystallized at temperatures of 1160–1280°C and a pressure range between 20 and 100 MPa. The xenolith is a leucocratic rock with negligible amounts of mafic minerals, which clearly distinguishes it from the known occurrences of silicic rocks in the rift valleys of MOR. The rhyolite melt crystallized at temperatures of 900–880°C. The final stages of rhyolite melt crystallization at temperatures of 780–800°C were accompanied by the release of a saline aqueous fluid with high chloride contents. Based on the geochemical characteristics of melt inclusions and melting products, it can be suggested that the magmatic melt was produced by melting of metamorphosed oceanic crust within the Cleft segment under the influence sof saline aqueous fluid trapped in the pores and interstices of the rock. The rock represented by the xenolith is a late differentiation product of such melts. The ultimate products of silicic melt fractionation show high volatile contents: H2O > 3.0 wt %, Cl ~ 2.0 wt %, and F ~ 0.1 wt %. The interaction of the xenolith with the host basaltic melt occurred at temperatures equal or slightly higher than those of ferrobasalt melts (1190–1180°C). During ascent the xenolith occurred for a few tens of hours in high-temperature basic magma, and diffusion exchange between the basaltic and silicic melts was very minor.  相似文献   

9.
The gas and fluid transport in magmas via permeable flow through interconnected bubble networks controls the rate of outgassing from magmas ascending in volcanic conduits and the fluid transport in the mushy boundary layer of magma reservoirs. Hence, clarifying its mechanism and rate is crucial to understanding the explosivity of volcanic eruptions and the evolution and dynamics of a magma reservoir. Recent experimental studies have determined the gas permeabilities in crystal-free rhyolite and basalt. However, no experimental study has investigated the effect of the crystal contents on the permeable gas transport in magmas. In this study, we performed decompression experiments for hydrous rhyolitic melts having crystallinities of 30 and 50 vol% to examine the effect of crystals on the bubble microstructure and gas permeability during magma vesiculation. Size-controlled (100-meshed) corundum crystals were used as an analog of the phenocrysts in silicic magmas. Microstructural analyses using X-ray CT showed that bubbles coalesce and their connectivity increases with a decrease in the final pressure after the decompression, that is, an increase in the vesicularity. As long as the vesicularities of melt part in the crystal-free basis (melt vesicularity) were similar, no clear effect of the crystallinity on the degree of bubble coalescence and connectivity was observed at melt vesicularities <68 vol%. The corundum showed a large contact angle with aqueous fluid as well as plagioclase and alkaline feldspar; this failed to induce the efficient heterogeneous nucleation and coalescence of bubbles on its surface. The gas permeabilities of all the run products were lower than the detection limits of the present analysis (the order of 10−16 m2) at melt vesicularities <68 vol%. These results show that silicic magmas containing 30 and 50 vol% phenocrysts with a large contact angle have low gas permeabilities until the vesicularity becomes large (at least >68 vol%). This result indicates that the permeable fluid transport through a deep volcanic conduit, which has been proposed on the basis of the observations of volcanic gases and natural products, is so slow that other processes, like shear deformation or magma convection, may be needed to explain the observations.  相似文献   

10.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas producing the the comendites of the Sant bimodal volcanic association (Central Mongolia). The mechanisms of the formation of melts were determined. The primary melt and coexisting crystalline inclusions in quartz from three samples of comendites collected from different parts of the volcanic section were studied. Among the crystalline inclusions, sanidine, zircon, and the REE diortosilicate–chevkinite were identified. The phenocrysts of the comendites were determined to crystallize at temperatures of 880–960°C. The homogeneous glasses of melt inclusions have both trachydacite and rhyolite compositions. They are characterized by high concentrations of Zr, Nb, Rb, Y, Th and REE. Significant differences were determined in concentrations of Li and volatile component (H2O and F) in the glasses: some of the melts are enriched in these components, whereas other are depleted in them.Analysis of the composition of the glasses of the homogenized melt inclusions in quartz of comendites from the Sant bimodal association allowed us to recognize magmatic processes responsible for formation of the comendite melts. The dominant role among them belongs to crystallization differentiation of the magma, accompanied by a process of liquid immiscibility with participation of fluoride melts.  相似文献   

11.
The results of high pressure experiments on diffusion and Soret separation in natural silicate melts show that the diffusive behaviour between natural silicic and mafic magmas can be approximately modelled as if the system were a binary mixture of SiO2 and other components such as MgO+FeO+CaO. Steady state compositional profiles across a diffusive interface between silicic and mafic magma layers are calculated on the basis of phenomenological relationships for the fluxes of chemical species and heat in the binary mixtures, using the experimental data of diffusion and Soret coefficients in natural silicate melts. The compositional profiles show a curvature with a minimum SiO2 value within the interface due to the Soret effect and temperature dependence of diffusion coefficient. The compositional gradient at the lower half of the diffusive interface is similar to that resulting from the Soret separation of a mafic melt regardless of the composition of the silicic magmas. These results suggest that picritic magma can be formed in the interfacial region between the mafic and silicic magma layers. The compositional gradient explains chemical variation of mafic to picritic inclusions in a mixed andesite of the Abu Volcano Group, Japan.  相似文献   

12.
Long-standing controversy persists over the presence and role of iron–rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron–rich and silica–rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock–hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks(brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldsparmagnetite type, K-feldspar–magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual ironrich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatichydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.  相似文献   

13.
Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤?8 wt% H2O). CO2 contents are generally low (<?650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (<?3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (<?140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (<?569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3?±?2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.  相似文献   

14.
Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.  相似文献   

15.
The compositions of parental melts of Tolbachinsky Dol (Kamchatka) basalts were estimated from the compositions of olivine-hosted (Fo90.5-83.1) primitive melt inclusions in the rocks of the Northern breakthrough of the Great Tolbachik Fissure Eruption (1975 A.C.) and of the late-Holocene cone “1004”. The parental melts contain 100–150 ppm Cu and 0.16–0.30 wt % S. These concentrations are much higher than those determined for the initial magmas of mid-ocean ridge basalts (MORB), for example of the Juan de Fuca ridge (Cu = 55–105 ppm, S=0.09–0.12 wt %). Modeling of mantle melting under variable redox conditions demonstrated that the high Cu and S contents in the Tolbachinsky Dol melts can be obtained by 6–12% melting of DMM-like source under oxidized conditions (ΔQFM = +1.2 ± 0.1) and do not require a significant (>30–35% for S) subduction-related influx of these elements to the mantle source. The high contents of Cu and S in the Tolbachinsky Dol melts are largely explained by the increase of sulfide solubility in a silicate melt under oxidized conditions. In contrast, relatively reduced (ΔQFM ~ 0) conditions of MORB generation result in low contents of Cu and S in their initial magmas. The estimated ΔQFM values agree well with the data obtained using the Cr-spinel–olivine oxybarometer. The high oxygen potential of Tolbachinsky Dol primary magmas is inherited by more evolved magmas, thus favouring Cu enrichment up to 270 ppm during magma fractionation, approaching maximum copper contents in the global systematics of island-arc rocks.  相似文献   

16.
Solubility curves of water-hydrogen fluid were studied using a high-pressure gas apparatus at a pressure of 200 MPa under variable fluid composition in haplogranite (Ab 39 Or 32 Qtz 29, 950°C), Na-disilicate (Na2Si2O5, 950°C), and albite melts (1200°C). The mole fraction of hydrogen in experiments was controlled directly by Ar-H2 mixtures using a specially designed cell with a Shaw membrane. $ X_{H_2 }^{Ar - H_2 } $ X_{H_2 }^{Ar - H_2 } ranged from 0 to 1. In some experiments with haplogranite and Na-disilicate melts under oxidizing conditions, in order to increase the accuracy of experimental parameters, the fugacities of oxygen and hydrogen were controlled using the double-capsule technique and the solid-phase buffer mixtures Ni-NiO (NNO) and Co-CoO (CCO). The addition of H2 to the H2O-saturated systems ($ X_{H_2 }^{H_2 O - H_2 } $ X_{H_2 }^{H_2 O - H_2 } ≥ 0.012) results in the appearance of a distinct maximum on the solubility curves at $ X_{H_2 }^{H_2 O - H_2 } $ X_{H_2 }^{H_2 O - H_2 } = 0.05–0.07 (H2 mole fractions were calculated for real H2O-H2 mixtures of real gases), and the maximum content of H2O-H2 fluid increases relative to the H2O-saturated melts by 1.51 wt % for haplogranite melt at $ X_{H_2 } $ X_{H_2 } = 0.063, 2.68 wt % for albite melt at $ X_{H_2 } $ X_{H_2 } = 0.066, and 3.54 wt % for Na-disilicate melt at $ X_{H_2 } $ X_{H_2 } = 0.067. A further increase in H2 content in the gas mixture decreases the solubility of H2O-H2 fluid in the melts, and under pure H2 pressure, the contents of fluid components are 0.08 wt % in haplogranite melt and 0.06 wt % in albite melt. The 1H NMR study of aluminosilicate and Na-silicate glasses obtained under the pressure of H2O and H2O-H2 fluids suggests different mechanisms of the dissolution of H2O and H2O-H2 fluids in magmatic melts. In addition to the spectra of dissolved water fluid, the spectra of quenched glasses synthesized under H2O-H2 fluid pressure exhibited a narrow line of molecular hydrogen with a width at half height of 1.8–2.0 kHz at $ X_{H_2 } $ X_{H_2 } ≥ 0.653 for albite and $ X_{H_2 } $ X_{H_2 } ≥ 0.063 for Na-disilicate and two lines at $ X_{H_2 } $ X_{H_2 } ≥ 0.063 for the haplogranite composition.  相似文献   

17.
This paper reports experimental data on columbite solubility in model water-saturated Li- and F-rich silicic melts with different contents of alumina and alkalis. It was found that the columbite solubility is strongly affected by melt composition and is maximal in peralkaline melt. The maximum contents of Ta and Nb in subaluminous and peraluminous melts at the contact with columbite are lower by at least an order of magnitude. The peralkaline melt is relatively enriched in Nb, and the peraluminous melt is enriched in Ta. The temperature dependence of solubility is positive but less pronounced than the effect of melt composition. It is most distinct in the subaluminous melts. The Nb/Ta ratio of melt usually decreases with decreasing temperature. The effect of pressure is relatively small. It was shown that columbite cannot crystallize on the liquidus of both peralkaline and peraluminous magmas. Perhaps, columbite crystallization from a melt is possible only at final near-solidus stages at the high degrees of crystallization of strongly evolved low-temperature melts.  相似文献   

18.
In order to characterize the composition of the parental melts of intracontinental alkali-basalts, we have undertaken a study of melt and fluid inclusions in olivine crystals in basaltic scoria and associated upper mantle nodules from Puy Beaunit, a volcano from the Chaîne des Puys volcanic province of the French Massif Central (West-European Rift system). Certain melt inclusions were experimentally homogenised by heating-stage experiments and analysed to obtain major- and trace-element compositions. In basaltic scoria, olivine-hosted melt inclusions occur as primary isolated inclusions formed during growth of the host phase. Some melt inclusions contain both glass and daughter minerals that formed during closed-system crystallisation of the inclusion and consist mainly of clinopyroxene, plagioclase and rhönite crystals. Experimentally rehomogenised and naturally quenched, glassy inclusions have alkali-basalt compositions (with SiO2 content as low as 42 wt%, MgO>6 wt%, Na2O+K2O>5 wt%, Cl~1,000–3,000 ppm and S~400–2,000 ppm), which are consistent with those expected for the parental magmas of the Chaîne des Puys magmatic suites. Their trace-element signature is characterized by high concentration(s) of LILE and high LREE/HREE ratios, implying an enriched source likely to have incorporated small amounts of recycled sediments. In olivine porphyroclasts of the spinel peridotite nodules, silicate melt inclusions are secondary in nature and form trails along fracture planes. They are generally associated with secondary CO2 fluid inclusions containing coexisting vapour and liquid phases in the same trail. This observation and the existence of multiphase inclusions consisting of silicate glass and CO2-rich fluid suggest the former existence of a CO2-rich silicate melt phase. Unheated glass inclusions have silicic major-element compositions, with normative nepheline and olivine components, ~58 wt% SiO2, ~9 wt% total alkali oxides, <3 wt% FeO and MgO. They also have high chlorine levels (>3,000 ppm) but their sulphur concentrations are low (<200 ppm). Comparison with experimental isobaric trends for peridotite indicates that they represent high-pressure (~1.0 GPa) trapped aliquots of near-solidus partial melts of spinel peridotite. Following this hypothesis, their silica-rich compositions would reflect the effect of alkali oxides on the silica activity coefficient of the melt during the melting process. Indeed, the silica activity coefficient decreases with addition of alkalis around 1.0 GPa. For mantle melts coexisting with an olivine-orthopyroxene-bearing mineral assemblage buffering SiO2 activity, this decrease is therefore compensated by an increase in the SiO2 content of the melt. Because of their high viscosity and the low permeability of their matrix, these near-solidus peridotite melts show limited ability to segregate and migrate, which can explain the absence of a chemical relationship between the olivine-hosted melt inclusions in the nodules and in basaltic scoria.  相似文献   

19.
A. A. Borisov 《Petrology》2008,16(6):552-564
Model silicate melts with variable Al2O3 and SiO2 contents were experimentally saturated with alkalis at a total pressure of 1 atm and temperatures of 1300–1470°C, using the crucible supported loop technique. It was shown that Al2O3 content has little influence on the degree of silicate melt saturation with K and Na. In contrast, SiO2 content strongly affects the solubility of alkalis in silicate melts. Model calculations were performed to evaluate the behavior of alkalis during the contamination/mixing of basic and silicic magmas.  相似文献   

20.
笔者在冲绳海槽海底玄武岩基质中发现的中酸性玻璃质熔体 ,与以往在基性火山岩中发现的玻璃质熔体存在明显的差异 :( 1)在存在状态上 ,前者呈充填状态存在于细小的基质矿物之间 ,其体积明显受到岩浆冷却速率的制约 ;后者常出现富铁相和富硅相两种熔体共存现象 ,且一种熔体常呈球状分布于另一种熔体中。 ( 2 )在成分演化上 ,前者随着冷却速率的降低 ,成分向酸性方向演化 ;后者的成分与冷却速率间的关系不明显 ,一直表现为富铁相和富硅相两端员成分 ,缺失中间过渡成分。这两种类型的熔体 ,分别反映了幔源岩浆不同的演化过程 :冲绳海槽海底玄武岩中的中酸性玻璃质熔体 ,反映了幔源岩浆结晶分异演化过程 ,并记录了演化过程中各阶段产物的特征 ;而以往在基性火山岩中发现的富铁相和富硅相两种熔体的共存现象 ,反映了幔源岩浆的熔离过程 ,并记录了熔离产物的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号