首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tracing groundwater flow in the Borden aquifer using krypton-85   总被引:3,自引:0,他引:3  
Krypton-85 was measured in air, soil gas, and ground water at the Borden aquifer in Ontario in October 1989. The measured specific activities in air and soil gas were 52.0 ± 2.0 and 53.6 ± 1.8 disintegrations per min (dpm) cm−3 krypton. These measurements are in excellent agreement with the global atmospheric trend and demonstrate that krypton-85 enters the water table at the Borden site without a lag in the soil gas reservoir. The krypton-85 specific activity in five groundwater samples ranged from 44.9 to 9.5 dpm cm−3 corresponding to groundwater ages of 2–17 years with a monotonic decrease in specific activity (increase in age) along the groundwater flow path. Travel times calculated from a two-dimensional steady-state model of groundwater flow agree well with the krypton-85 ages in the main recharge region of the aquifer where flow is predominantly vertical, but were 30–40% older than the krypton-85 age downstream of the main recharge area where the flow is mainly horizontal. The effect of dispersion on the distribution of krypton-85 was determined by modelling the transport of krypton-85 in the Borden aquifer with a two-dimensional time-dependent advection dispersion model using the steady-state flow field. Agreement between model specific activity and observed specific activity was excellent for samples in the main recharge region, but the model specific activities were 30–50% lower than observed specific activities in the region of horizontal flow. The differences in travel times and krypton-85 ages and in model krypton-85 and observed krypton-85 specific activities are considered to be small given the heterogeneities that exist in the hydraulic conductivity and aquifer geometry and hence in the groundwater flow field. The model simulated krypton-85 distribution was not sensitive to changes in longitudinal dispersivity and was only weakly sensitive to changes in transverse dispersivity. The geochemical inertness, well-defined source function, and insensitivity to dispersion of krypton-85 allow estimates of groundwater age to be made in a straightforward manner and measurement of krypton-85 can significantly enhance the characterization of groundwater flow in many shallow subsurface systems.  相似文献   

2.
The delineation of wellhead protection areas (WHPAs) under uncertainty is still a challenge for heterogeneous porous media. For granular media, one option is to combine particle tracking (PT) with the Monte Carlo approach (PT‐MC) to account for geologic uncertainties. Fractured porous media, however, require certain restrictive assumptions under this approach. An alternative for all types of media is the capture probability (CP) approach, which is based on the solution of the standard advection‐dispersion equation in a backward mode, making use of the analogy between forward and backward transport processes. Within this context, we review the current controversy about the correct form of the conceptual model for transport, finding that the advection‐diffusion model, which represents the diffusive interchange between streamtubes with differing velocities, is more physically realistic than the conventional advection‐dispersion model. For mildly to moderately heterogeneous materials, stochastic theories and simulation experiments show that this process converges at the field scale to an effective advection‐dispersion process that can be simulated with conventional transport models using appropriate macrodispersivity values. For highly heterogeneous materials, stochastic theories do not yet exist but there is no reason why the process should not converge naturally as well. Macrodispersivities appear to be formation‐specific. The advection‐dispersion model can be used for capture zone delineation in heterogeneous granular media. For fractured porous systems, hybrid equivalent porous medium and discrete fracture network or CP‐based approaches may have potential. In general, capture zones delineated by PT without MC will always be too small and should not be used as a basis for land‐use decisions.  相似文献   

3.
We present a model of chemical reaction within hills to explore how evolving porosity (and by inference, permeability) affects flow pathways and weathering. The model consists of hydrologic and reactive-transport equations that describe alteration of ferrous minerals and feldspar. These reactions were chosen because previous work emphasized that oxygen- and acid-driven weathering affects porosity differently in felsic and mafic rocks. A parameter controlling the order of the fronts is presented. In the absence of erosion, the two reaction fronts move at different velocities and the relative depths depend on geochemical conditions and starting composition. In turn, the fronts and associated changes in porosity drastically affect both the vertical and lateral velocities of water flow. For these cases, estimates of weathering advance rates based on simple models that posit unidirectional constant-velocity advection do not apply. In the model hills, weathering advance rates diminish with time as the Darcy velocities decrease with depth. The system can thus attain a dynamical steady state at any erosion rate where the regolith thickness is constant in time and velocities of both fronts become equal to one another and to the erosion rate. The slower the advection velocities in a system, the faster it attains a steady state. For example, a massive rock with relatively fast-dissolving minerals such as diabase – where solute transport across the reaction front mainly occurs by diffusion – can reach a steady state more quickly than granitoid rocks in which advection contributes to solute transport. The attainment of a steady state is controlled by coupling between weathering and hydrologic processes that force water to flow horizontally above reaction fronts where permeability changes rapidly with depth and acts as a partial barrier to fluid flow. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

4.
Ground water modeling applications using the analytic element method   总被引:1,自引:0,他引:1  
Hunt RJ 《Ground water》2006,44(1):5-15
Though powerful and easy to use, applications of the analytic element method are not as widespread as finite-difference or finite-element models due in part to their relative youth. Although reviews that focus primarily on the mathematical development of the method have appeared in the literature, a systematic review of applications of the method is not available. An overview of the general types of applications of analytic elements in ground water modeling is provided in this paper. While not fully encompassing, the applications described here cover areas where the method has been historically applied (regional, two-dimensional steady-state models, analyses of ground water-surface water interaction, quick analyses and screening models, wellhead protection studies) as well as more recent applications (grid sensitivity analyses, estimating effective conductivity and dispersion in highly heterogeneous systems). The review of applications also illustrates areas where more method development is needed (three-dimensional and transient simulations).  相似文献   

5.
Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages < 2 years; further downgradient apparent ages increase, reaching > 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from < 1 to > 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.  相似文献   

6.
Using heat as a tracer allows for estimation of ground water recharge rates based on subsurface temperature measurements. While possible in theory, it may be difficult in practice to discriminate the effects of climate from the effects of ground water advection. This study uses synthetic simulations to determine the influence of variability of ground surface temperature (GST) on the ability to estimate vertical specific discharge from temperature profiles. Results suggest that in cases where temperature measurements are sufficiently deep and specific discharge is sufficiently high, estimates of specific discharges will be reasonably accurate. Increasing the number of times temperatures are measured, or producing models that incorporate variations in GST, will increase the reliability of any studies using temperatures to estimate specific discharge. Furthermore, inversions of temperature measurements should be combined with other methods of estimating recharge rates to improve the reliability of recharge estimates.  相似文献   

7.
Ground water recharge and flow characterization using multiple isotopes   总被引:2,自引:0,他引:2  
Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.  相似文献   

8.
Potential for satellite remote sensing of ground water   总被引:2,自引:0,他引:2  
Becker MW 《Ground water》2006,44(2):306-318
Predicting hydrologic behavior at regional scales requires heterogeneous data that are often prohibitively expensive to acquire on the ground. As a result, satellite-based remote sensing has become a powerful tool for surface hydrology. Subsurface hydrology has yet to realize the benefits of remote sensing, even though surface expressions of ground water can be monitored from space. Remotely sensed indicators of ground water may provide important data where practical alternatives are not available. The potential for remote sensing of ground water is explored here in the context of active and planned satellite-based sensors. Satellite technology is reviewed with respect to its ability to measure ground water potential, storage, and fluxes. It is argued here that satellite data can be used if ancillary analysis is used to infer ground water behavior from surface expressions. Remotely sensed data are most useful where they are combined with numerical modeling, geographic information systems, and ground-based information.  相似文献   

9.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

10.
Pore water radon (222Rn) distributions from Indian River Lagoon, Florida, are characterized by three zones: a lower zone where pore water 222Rn and sediment-bound radium (226Ra) are in equilibrium and concentration gradients are vertical; a middle zone where 222Rn is in excess of sediment-bound 226Ra and concentration gradients are concave-downward; and an upper zone where 222Rn concentration gradients are nearly vertical. These 222Rn data are simulated in a one-dimensional numerical model including advection, diffusion, and non-local exchange to estimate magnitudes of submarine groundwater discharge components (fresh or marine). The numerical model estimates three parameters, fresh groundwater seepage velocity, irrigation intensity, and irrigation attenuation, using two Monte Carlo (MC) simulations that (1) ensure the minimization algorithm converges on a global minimum of the merit function and the parameter estimates are consistent within this global minimum, and (2) provide 90% confidence intervals on the parameter estimates using the measured 222Rn activity variance. Model estimates of seepage velocities and discharge agree with previous estimates obtained from numerical groundwater flow models and seepage meter measurements and show the fresh water component decreases offshore and varies seasonally by a factor of nine or less. Comparison between the discharge estimates and precipitation patterns suggests a mean residence time in unsaturated and saturated zones on the order of 5 to 7 months. Irrigation rates generally decrease offshore for all sampling periods. The mean irrigation rate is approximately three times greater than the mean seepage velocity although the ranges of irrigation rates and seepage velocities are the same. Possible mechanisms for irrigation include density-driven convection, wave pumping, and bio-irrigation. Simulation of both advection and irrigation allows the separation of submarine groundwater discharge into fresh groundwater and (re)circulated lagoon water.  相似文献   

11.
A strategy for modeling ground water rebound in abandoned deep mine systems   总被引:3,自引:0,他引:3  
Adams R  Younger PL 《Ground water》2001,39(2):249-261
Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area < 200 km2), a physically based modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.  相似文献   

12.
Sehlke G  Jacobson J 《Ground water》2005,43(5):722-730
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multipurpose national laboratory managed by the Department of Energy, has developed a system dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River basin, a transboundary basin that includes portions of Idaho, Utah, and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found that system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory, and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple "what-if" scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause-effect relationships in large-scale hydrological systems, for integrating disparate data, for incorporating output from traditional hydraulic/hydrologic models, and for integration of interdisciplinary data, information, and criteria to support better management decisions.  相似文献   

13.
Tom Myers 《Ground water》2012,50(6):872-882
Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential for various forms of water pollution. Two potential pathways—advective transport through bulk media and preferential flow through fractures—could allow the transport of contaminants from the fractured shale to aquifers. There is substantial geologic evidence that natural vertical flow drives contaminants, mostly brine, to near the surface from deep evaporite sources. Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults or fracture zones, as found throughout the Marcellus shale region, could reduce the travel time further. Injection of up to 15,000,000 L of fluid into the shale generates high pressure at the well, which decreases with distance from the well and with time after injection as the fluid advects through the shale. The advection displaces native fluids, mostly brine, and fractures the bulk media widening existing fractures. Simulated pressure returns to pre‐injection levels in about 300 d. The overall system requires from 3 to 6 years to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. The rapid expansion of hydraulic fracturing requires that monitoring systems be employed to track the movement of contaminants and that gas wells have a reasonable offset from faults.  相似文献   

14.
Transient storage zones (TSZs) are located at the interface of rivers and their abutting aquifers and play an important role in hydrological and biogeochemical functioning of rivers. The natural radioactive tracer 222Rn is a particularly well-suited tracer for studying TSZ water exchange and age. Although 222Rn measurement techniques have developed rapidly, there has been less progress in modeling 222Rn activities. Here, we combine field measurements with the numerical model HydroGeoSphere (HGS) to simulate 222Rn emanation, decay and transport during steady state (riffle-pool sequence) and transient (bank storage) conditions. Comparing the HGS mean water ages with the conventional 222Rn apparent ages during steady state showed a systemic underestimation of apparent age with increasing dispersion and especially where large concentration gradients exist within the subsurface. A large underestimation of apparent water age was also observed at the advective front during bank storage where regional high 222Rn groundwater mixes with newly infiltrated surface water. The explicit modeling of radiogenic tracers such as 222Rn offers a physical interpretation of this data as well as a useful way to test simplified apparent age models.  相似文献   

15.
This study describes the development of a general model for reaction in and performance of spatially heterogeneous bioreactors such as treatment wetlands. The modeled domain possesses local-scale velocities, reaction rates and transverse dispersion coefficients that are functions of an underlying heterogeneity variate representing one or more controlling biophysical attributes, for example, reactive surface area (submerged plant) density. Reaction rate coefficients are treated as related to local velocities in an inverse square fashion via their mutual dependence upon the variate. The study focuses on the solution for the steady-state case with constant inlet concentration. Results compare well with exact solutions developed for laterally-bounded systems in which the heterogeneity is represented explicitly. Employing the bicontinuum analogue of a second-order model, an expression for an effective longitudinal dispersion coefficient as a function of travel distance is developed using the method of moments. The result provides insights into the behavior of concentration as transverse mixing drives the system asymptotically toward Fickian longitudinal dispersion. The model may represent an improvement over other approaches for characterizing treatment wetland performance because it accounts for evolving shear flow dispersion, and because parameters are few in number, physically based, and invariant with mean velocity.  相似文献   

16.
With most existing methods, transverse dispersion coefficients are difficult to determine. We present a new, simple, and robust approach based on steady-state transport of a reacting agent, introduced over a certain height into the porous medium of interest. The agent reacts with compounds in the ambient water. In our application, we use an alkaline solution injected into acidic ambient water. Threshold values of pH are visualized by adding standard pH indicators. Since aqueous-phase acid-base reactions can be considered practically instantaneous and the only process leading to mixing of the reactants is transverse dispersion, the length of the plume is controlled by the ratio of transverse dispersion to advection. We use existing closed-form expressions for multidimensional steady-state transport of conservative compounds in order to evaluate the concentration distributions of the reacting compounds. Based on these results, we derive an easy-to-use expression for the length of the reactive plume; it is proportional to the injection height squared, times the velocity, and inversely proportional to the transverse dispersion coefficient. Solving this expression for the transverse dispersion coefficient, we can estimate its value from the length of the alkaline plume. We apply the method to two experimental setups of different dimension. The computed transverse dispersion coefficients are rather small. We conclude that at slow but realistic ground water velocities, the contribution of effective molecular diffusion to transverse dispersion cannot be neglected. This results in plume lengths that increase with increasing velocity.  相似文献   

17.
The delineation of well capture zones is a basic component of ground water protection. The conventional methodology for capture zone delineation is backward advective particle tracking, often applied under the assumption of a two-dimensional aquifer. The suitability of the conventional approach for complex heterogeneous multi-aquifer systems was investigated, using the Waterloo Moraine aquifer system as an example. It was found that the conventional approach produces irregular particle tracks that require judgment to interpret in a meaningful way, and it can raise questions that may affect the credibility of the capture zone delineation. As an alternative, the potentially powerful but little-used backward-in-time advective-dispersive transport approach was investigated. A key advantage of this approach is its capability to represent local heterogeneities through the dispersion term. The dispersion process has a natural smoothing effect that results in unambiguous capture zones without the need for interpretation, thus enhancing credibility. The question of capture zone validation is also addressed. The meaning of a three-dimensional capture zone is considered, and it is shown that a fully three-dimensional representation of the system is crucial for valid results. The distinction between the maximum extent capture zone and the surface capture zone is also explained. In the case of complex heterogeneous systems, advective particle tracking can be used as an initial screening tool, whereas the more realistic backward-transport modeling approach can be used for final capture-zone delineation.  相似文献   

18.
Time nonlocal transport models such as the time fractional advection‐dispersion equation (t‐fADE) were proposed to capture well‐documented non‐Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non‐Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t‐fADE model. Fitting exercises show that the effective dispersion coefficient in the t‐fADE, although differing subtly from the dispersion coefficient in the standard advection‐dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t‐fADE, the motion‐independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale‐dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t‐fADE with a constant dispersion coefficient cannot capture scale‐dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real‐world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination approach are necessary to incorporate the spatial evolution of local velocities without adding cumbersome parameters.  相似文献   

19.
20.
We have carried out numerical simulations of three-dimensional nonisothermal flow around an in situ heat-based flow sensor to investigate how formation heterogeneities can affect the interpretation of ground water flow velocities from this instrument. The flow sensor operates by constant heating of a 0.75-m-long, 5-cm-diameter cylindrical probe, which contains 30 thermistors in contact with the formation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the ground water flow velocity vector using the standard interpretive method, which assumes that the formation is homogeneous. Analysis of data from heat-based flow sensors installed in a sand aquifer at the Former Fort Ord Army Base near Monterey, California, suggested an unexpected component of downward flow. The magnitudes of the vertical velocities were expected to be much less than those of the horizontal velocities at this site because the sensors were installed just above a clay aquitard. Numerical simulations were conducted to examine how differences in thermal conductivities may lead to spurious indications of vertical flow velocities. We found that a decrease in the thermal conductivity near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that analyses assuming homogeneous thermal conductivity could indicate a vertical flow component even though flow is actually horizontal. This work demonstrates how modeling can be used to simulate instrument response to formation heterogeneity and shows that caution must be used in interpreting data from such devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号