首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
Multianvil melting experiments in the system CaO–MgO–Al2O3–SiO2–CO2(CMAS–CO2) at 3–8 GPa, 1340–1800°C, involvingthe garnet lherzolite phase assemblage in equilibrium with CO2-bearingmelts, yield continuous gradations in melt composition betweencarbonatite, kimberlite, melilitite, komatiite, picrite, andbasalt melts. The phase relations encompass a divariant surfacein PT space. Comparison of the carbonatitic melts producedat the low-temperature side of this surface with naturally occurringcarbonatites indicates that natural magnesiocarbonatites couldbe generated over a wide range of pressures >2·5 GPa.Melts analogous to kimberlites form at higher temperatures alongthe divariant surface, which suggests that kimberlite genesisrequires more elevated geotherms. However, the amount of waterfound in some kimberlites has the potential to lower temperaturesfor the generation of kimberlitic melts by up to 150°C,provided no hydrous phases are present. Compositions resemblinggroup IB and IA kimberlites are produced at pressures around5–6 GPa and 10 GPa, respectively, whereas the compositionsof some other kimberlites suggest generation at higher pressuresstill. At pressures <4 GPa, an elevated geotherm producesmelilitite-like melt in the CMAS–CO2 system rather thankimberlite. Even when a relatively CO2-rich mantle compositioncontaining 0·15 wt % CO2 is assumed, kimberlites andmelilitites are produced by <1% melting and carbonatitesare generated by even smaller degrees of melting of <0·5%. KEY WORDS: carbonatite; CO2; kimberlite; melilitite; melt generation  相似文献   

2.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   

3.
Fe–Mg exchange is the most important solid solution involvedin partial melting of spinel lherzolite, and the system CaO–MgO–Al2O3–SiO2–FeO(CMASF) is ideally suited to explore this type of exchange duringmantle melting. Also, if primary mid-ocean ridge basalts arelargely generated in the spinel lherzolite stability field bynear-fractional fusion, then Na and other highly incompatibleelements will early on become depleted in the source, and themelting behaviour of mantle lherzolite should resemble the meltingbehaviour of simplified lherzolite in the CMASF system. We havedetermined the isobarically univariant melting relations ofthe lherzolite phase assemblage in the CMASF system in the 0·7–2·8GPa pressure range. Isobarically, for every 1 wt % increasein the FeO content of the melt in equilibrium with the lherzolitephase assemblage, the equilibrium temperature is lower by about3–5°C. Relative to the solidus of model lherzolitein the CaO–MgO–Al2O3–SiO2 system, melt compositionsin the CMASF system are displaced slightly towards the alkalicside of the basalt tetrahedron. The transition on the solidusfrom spinel to plagioclase lherzolite has a positive Clapeyronslope with the spinel lherzolite assemblage on the high-temperatureside, and has an almost identical position in P–T spaceto the comparable transition in the CaO–MgO–Al2O3–SiO2–Na2O(CMASN) system. When the compositions of all phases are describedmathematically and used to model the generation of primary basalts,temperature and melt composition changes are small as percentmelting increases. More specifically, 10% melting takes placeover 1·5–2°C, melt compositions are relativelyinsensitive to the degree of melting and bulk composition, andequilibrium and near-fractional melting yield similar melt compositions.FeO and MgO are the oxides that exhibit the greatest changein the melt with degree of melting and bulk composition. Theamount of FeO decreases with increasing degree of melting, whereasthe amount of MgO increases. The coefficients for Fe–Mgexchange between the coexisting crystalline phases and melt,KdFe–Mgxl–liq, show a relatively simple and predictablebehaviour with pressure and temperature: the coefficients forolivine and spinel do not show significant dependence on temperature,whereas the coefficients for orthopyroxene and clinopyroxeneincrease with pressure and temperature. When melting of lherzoliteis modeled in the CMASF system, a strong linear correlationis observed between the mg-number of the lherzolite and themg-number of the near-solidus melts. Comparison with meltingin the CMASN system indicates that Na2O has a strong effecton lherzolite melting behaviour only at small degrees of melting. KEY WORDS: CMASF; lherzolite solidus; mantle melting  相似文献   

4.
Experiments were conducted to determine the solubilities ofH2O and CO2 and the nature of their mixing behavior in basalticliquid at pressures and temperature relevant to seqfloor eruption.Mid-ocean ridge basaltic (MORB) liquid was equilibrated at 1200°Cwith pure H2O at pressures of 176–717 bar and H2O—CO2vapor at pressures up to 980 bar. Concentrations and speciationof H2O and CO2 dissolved in the quenched glasses were measuredusing IR spectroscopy. Molar absorptivities for the 4500 cm–1band of hydroxyl groups and the 5200 and 1630 cm–1 bandsof molecular water are 0•67±0•03, 0•62±0•07,and 25±3 l/mol-cm, respectively. These and previouslydetermined molar absorptivities for a range of silicate meltcompositions correlate positively and linearly with the concentrationof tetrahedral cations (Si+Al). The speciation of water in glass quenched from vapor-saturatedbasaltic melt is similar to that determined by Silver &Stolper (Journal of Petrology 30, 667–709, 1989) in albiticglass and can be fitted by their regular ternary solution modelusing the coefficients for albitic glasses. Concentrations ofmolecular water measured in the quenched basaltic glasses areproportional to f H2O in all samples regardless of the compositionof the vapor, demonstrating that the activity of molecular waterin basaltic melts follows Henry's law at these pressures. Abest fit to our data and existing higher-pressure water solubilitydata (Khitarov et al., Geochemistry 5, 479–492, 1959;Hamilton et al., Journal of Petrology 5, 21–39, 1964),assuming Henrian behavior for molecular water and that the dependenceof molecular water content on total water content can be describedby the regular solution model, gives estimates for the Vo, mH2Oof 12±1 cm3/mol and for the 1-bar water solubility of0•11 wt%. Concentrations of CO2 dissolved as carbonate in the melt forpure CO2-saturated and mixed H2O-CO2-saturated experiments area simple function of fCO2 These results suggest Henrian behaviorfor the activity of carbonate in basaltic melt and do not supportthe widely held view that water significantly enhances the solutionof carbon dioxide in basaltic melts. Using a Vo, mr of 23 cm3/mol(Pan et al., Geochimica et Cosmochimica Acta 55, 1587–1595,1991), the solubility of carbonate in the melt at 1 bar and1200°C is 0•5 p.p.m. Our revised determination of CO2solubility is 20% higher than that reported by Stolper &Holloway (Earth and Planetary Science Letters 87, 397–408,1988). KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; experimental petrology  相似文献   

5.
Phase Relations of Peralkaline Silicic Magmas and Petrogenetic Implications   总被引:16,自引:5,他引:16  
The phase relationships of three peralkaline rhyolites fromthe Kenya Rift have been established at 150 and 50 MPa, at oxygenfugacities of NNO - 1·6 and NNO + 3·6 (log fO2relative to the Ni–NiO solid buffer), between 800 and660°C and for melt H2O contents ranging between saturationand nominally anhydrous. The stability fields of fayalite, sodicamphiboles, chevkinite and fluorite in natural hydrous silicicmagmas are established. Additional phases include quartz, alkalifeldspar, ferrohedenbergite, biotite, aegirine, titanite, montdoriteand oxides. Ferrohedenbergite crystallization is restrictedto the least peralkaline rock, together with fayalite; it isreplaced at low melt water contents by ferrorichterite. Riebeckite–arfvedsoniteappears only in the more peralkaline rocks, at temperaturesbelow 750°C (dry) and below 670°C at H2O saturation.Under oxidizing conditions, it breaks down to aegirine. In themore peralkaline rocks, biotite is restricted to temperaturesbelow 700°C and conditions close to H2O saturation. At 50MPa, the tectosilicate liquidus temperatures are raised by 50–60°C,and that of amphibole by 30°C. Riebeckite–arfvedsonitestability extends down nearly to atmospheric pressure, as aresult of its F-rich character. The solidi of all three rocksare depressed by 40–100°C compared with the solidusof the metaluminous granite system, as a result of the abundanceof F and Cl. Low fO2 lowers solidus temperatures by at least30°C. Comparison with studies of metaluminous and peraluminousfelsic magmas shows that plagioclase crystallization is suppressedas soon as the melt becomes peralkaline, whatever its CaO orvolatile contents. In contrast, at 100 MPa and H2O saturation,the liquidus temperatures of quartz and alkali feldspar arenot significantly affected by changes in rock peralkalinity,showing that the incorporation of water in peralkaline meltsdiminishes the depression of liquidus temperatures in dry peralkalinesilicic melts compared with dry metaluminous or peraluminousvarieties. At 150 MPa, pre-eruptive melt H2O contents rangefrom 4 wt % in the least peralkaline rock to nearly 6 wt % inthe two more peralkaline compositions, in broad agreement withprevious melt inclusion data. The experimental results implymagmatic fO2 at or below the fayalite–quartz–magnetitesolid buffer, temperatures between 740 and 660°C, and meltevolution under near H2O saturation conditions. KEY WORDS: peralkaline; rhyolite; phase equilibria  相似文献   

6.
Volatile Components, Magmas, and Critical Fluids in Upwelling Mantle   总被引:9,自引:2,他引:7  
The phase diagram for lherzolite–CO2–H2O providesa framework for interpreting the distribution of phase assemblagesin the upper mantle with various thermal structures, in differenttectonic settings. Experiments show that at depths >80 km,the near-solidus partial melts from lherzolite–CO2–H2Oare dolomitic, changing through carbonate–silicate liquidswith rising temperatures to mafic liquids; vapor, if it coexists,is aqueous. Experimental data from simple systems suggest thata critical end-point (K) occurs on the mantle solidus at anundetermined depth. Isobaric (T–X) phase diagrams forvolatile-bearing systems with K elucidate the contrasting phaserelationships for lherzolite–CO2–H2O at depths belowand above a critical end-point, arbitrarily placed at 250 km.At levels deeper than K, lherzolite can exist with dolomiticmelt, aqueous vapor, or with critical fluids varying continuouslybetween these end-members. Analyses of fluids in microinclusionsof fibrous diamonds reveal this same range of compositions,supporting the occurrence of a critical end-point. Other evidencefrom diamonds indicates that the minimum depth for this end-pointis 125 km; maximum depth is not constrained. Constructed cross-sectionsshowing diagrammatically the phase fields intersected by upwellingmantle indicate how rising trace melts may influence trace elementconcentrations within a mantle plume. KEY WORDS: mantle solidus; critical end-point; dolomitic magma; diamond inclusions; critical fluids  相似文献   

7.
Petrological and geochemical variations are used to investigatethe formation of granite magma from diatexite migmatites derivedfrom metasedimentary rocks of pelitic to greywacke compositionat St. Malo, France. Anatexis occurred at relatively low temperaturesand pressures (<800°C, 4–7 kbar), principally throughmuscovite dehydration melting. Biotite remained stable and servesas a tracer for the solid fraction during melt segregation.The degree of partial melting, calculated from modal mineralogyand reaction stoichiometry, was <40 vol. %. There is a continuousvariation in texture, mineralogy and chemical composition inthe diatexite migmatites. Mesocratic diatexite formed when metasedimentaryrocks melted sufficiently to undergo bulk flow or magma flow,but did not experience significant melt–residuum separation.Mesocratic diatexite that underwent melt segregation duringflow generated (1) melanocratic diatexites at the places wherethe melt fraction was removed, leaving behind a biotite andplagioclase residuum (enriched in TiO2, FeOT, MgO, CaO, Sc,Ni, Cr, V, Zr, Hf, Th, U and REE), and (2) a complementary leucocraticdiatexite (enriched in SiO2, K2O and Rb) where the melt fractionaccumulated. Leucocratic diatexite still contained 5–15vol. % residual biotite (mg-number 40–44) and 10–20vol. % residual plagioclase (An22). Anatectic granite magmadeveloped from the leucodiatexite, first by further melt–residuumseparation, then through fractional crystallization. Most biotitein the anatectic granite is magmatic (mg-number 18–22). KEY WORDS: anatexis; diatexite; granite magma; melt segregation; migmatite  相似文献   

8.
The Jericho kimberlites are part of a small Jurassic kimberlitecluster in the northern Slave craton, Canada. A variety of datingtechniques were applied to constrain the nature and age of twoJericho kimberlites, JD-1 (170·2 ± 4·3Ma Rb–Sr phlogopite megacrysts, 172·8 ±0·7 Ma U–Pb eclogite rutile, 178 ± 5 MaU–Pb eclogite zircon lower intercept) and JD-3 (173 ±2 Ma Rb–Sr phlogopite megacryst; 176·6 ±3·2 Ma U–Pb perovskite), and all yielded identicalresults within analytical uncertainty. As there is no discernibledifference in the radiometric ages obtained for these two pipes,the composite Rb–Sr phlogopite megacryst date of 173·1± 1·3 Ma is interpreted as the best estimate forthe emplacement age of both Jericho pipes. The initial Sr isotopecomposition of 0·7053 ± 0·0003 derivedfrom phlogopite megacrysts overlaps the range (0·7043–0·7084)previously reported for Jericho whole-rocks. These strontiumisotope data, combined with the radiogenic initial 206Pb/204Pbratio of 18·99 ± 0·33 obtained in thisstudy, indicate that the Jericho kimberlites are isotopicallysimilar to Group 1 kimberlites as defined in southern Africa.The Jericho kimberlites are an important new source of mantlexenoliths that hold clues to the nature of the Slave cratonsubcontinental mantle. A high proportion (30%) of the Jerichomantle xenolith population consists of various eclogite typesincluding a small number (2–3%) of apatite-, diamond-,kyanite- and zircon-bearing eclogites. The most striking aspectof the Jericho zircon-bearing eclogite xenoliths is their peculiargeochemistry. Reconstructed whole-rock compositions indicatethat they were derived from protoliths with high FeO, Al2O3and Na2O contents, reflected in the high-FeO (22·6–27·5wt %) nature of garnet and the high-Na2O (8·47–9·44wt %) and high-Al2O3 (13·12–14·33 wt %)character of the clinopyroxene. These eclogite whole-rock compositionsare highly enriched in high field strength elements (HFSE) suchas Nb (133–1134 ppm), Ta (5–28 ppm), Zr (1779–4934ppm) and Hf (23–64 ppm). This HFSE enrichment is linkedto growth of large (up to 2 mm) zircon and niobian rutile crystals(up to 3 modal %) near the time of eclogite metamorphism. Thediamond-bearing eclogites on the other hand are characterizedby high-MgO (19·6–21·3 wt %) garnet andultralow-Na2O (0·44–1·50 wt %) clinopyroxene.Paleotemperature estimates indicate that both the zircon- anddiamond-bearing eclogites have similar equilibration temperaturesof 950–1020°C and 990–1030°C, respectively,corresponding to mantle depths of 150–180 km. Integrationof petrographic, whole-rock and mineral geochemistry, geochronologyand isotope tracer techniques indicates that the Jericho zircon-bearingeclogite xenoliths have had a complex history involving Paleoproterozoicmetamorphism, thermal perturbations, and two or more episodesof Precambrian mantle metasomatism. The oldest metasomatic event(Type 1) occurred near the time of Paleoproterozoic metamorphism(1·8 Ga) and is responsible for the extreme HFSE enrichmentand growth of zircon and high-niobian rutile. A second thermalperturbation and concomitant carbonatite metasomatism (Type2) is responsible for significant apatite growth in some xenolithsand profound light rare earth element enrichment. Type 2 metasomatismoccurred in the period 1·0–1·3 Ga and isrecorded by relatively consistent whole-rock eclogite modelNd ages and secondary U–Pb zircon upper intercept dates.These eclogite xenoliths were derived from a variety of protoliths,some of which could represent metasomatized pieces of oceaniccrust, possibly linked to east-dipping subduction beneath theSlave craton during construction of the 1·88–1·84Ga Great Bear continental arc. Others, including the diamond-bearingeclogites, could be cumulates from mafic or ultramafic sillcomplexes that intruded the Slave lithospheric mantle at depthsof about 150–180 km. KEY WORDS: zircon- and diamond-bearing eclogites; Jericho kimberlite, geochronology; Precambrian metasomatism, northern Slave Craton  相似文献   

9.
Degassing processes in basaltic magmas rich in both water andcarbon dioxide can be modeled using the solubilities of theendmember systems and the assumption of Henry's law. Suitesof vapor-saturated basaltic melts having a range of initialCO2/H2O ratios and erupted over a narrow depth interval willdefine negatively sloped arrays on an H2O vs CO2 plot. It isimportant that all of the major volatile species be consideredsimultaneously when interpreting trends in dissolved volatilespecies concentrations in magmas. Based on measured concentrations of water and carbon dioxidein basaltic glasses, the composition of the vapor phase at 1200°Cthat could coexist with a basaltic melt and the pressure atwhich it would be vapor saturated can be calculated. The rangein vapor compositions in equilibrium with submarine basaltsreflects the range in water contents in the melts characteristicof each environment. The ranges in the molar proportion of CO2in vapor phases (XCO2) calculated to be in equilibrium withsubmarine tholeiitic glasses are 0•93–1•00 formid-ocean ridge basalts (MORB), 0•60–0•99 forglasses from Kilauea [representative of ocean island basalts(OIB)] and 0–0•94 for glasses from back-arc basins(BABB). MORB glasses from spreading centers ranging from slow(e.g. the Mid-Atlantic Ridge) to fast (e.g. East Pacific Rise,9–13°N) are commonly supersaturated with respect toCO2-rich vapor, resulting from magma ascent rates so rapid thatmagmas erupt on the sea-floor without having been fully degassedby bubble nucleation and growth during ascent. In contrast tothe MORB glasses, volatile contents in submarine glasses fromKilauea are consistent with having been in equilibrium witha vapor phase containing 60–100 mol% CO2 at the pressureof eruption, reflecting differences in average magma transportrates during eruptions at mid-ocean ridges and hotspot volcanoes. Degassing during decompression of tholeiitic basaltic magmais characterized by strong partitioning of CO2 into the vaporphase. During open system degassing, CO2 is rapidly removedfrom the melt with negligible loss of water, until a pressureis reached at which the melt is in equilibrium with nearly purewater vapor. From this pressure downward, the water contentof the melt follows the water solubility curve. During closedsystem degassing, water and CO2 contents in vapor-saturatedbasaltic magmas will depend strongly on the vapor compositionas determined by the initial volatile concentrations. Deviationfrom open system behavior, toward lower dissolved H2O and CO2saturation concentrations at a given pressure, will be greatestin melts having high total volatile concentrations and highCO2:H2O ratios. Closed system degassing of basaltic melts havingthe low initial H2O and CO2 contents typical of MORB and OIB,however, are similar to the open system case. KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; degassing  相似文献   

10.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

11.
Empirical Solution Model for Alkalic to Tholeiitic Basic Magmas   总被引:2,自引:0,他引:2  
Currently available models to simulate naturally occurring mineral–meltequilibria use mineral components limited to tholeiitic basaltcompositions and thus they cannot be used for alkali-rick basaltsand basanites. To expand mineral–melt equilibria calculationsto alkali-rich composition space at low pressures, we have derivedequations that describe chemical equilibria between olivine–melt,pyroxene–melt, plagioclase–melt, nepheline–meltand leucite–melt components. Excess free energies of reactionsbetween the end-member mineral and melt components at equilibriumhave been expressed as a function of melt composition, temperatureand fo2. The database used to calculate the mineral–meltexpressions consists of a total of >350 anhydrous experimentsconducted under controlled oxygen fugacity defined by the quartz–fayalite–magnetite(QFM) oxygen buffer. Rocks used in these experiments range frombasanites, nephelinites and alkali olivine basalts, to tholeiiticbasalts and basaltic andesites. Using bulk compositions of startingmaterials both in this experimental database and in others thatwere not incorporated into the regression of modeled parameters,modeled equations successfully predict, at a given temperatureand fo2, compositions of multiply saturated melts as well asthe compositions of coexisting minerals. Standard deviationsof the calculated mole fractions of mineral components () areas follows: anorthite 002; forsterite 002; clinoenstatite002; enstatite 0003; nepheline 002; and leucite 001. Standarddeviations () of the calculated melt compositions in terms ofweight percent of oxides are: SiO2 0•96; Al2O3 132; Fe2O3023; FeO 121; MgO 084; CaO 079; Na2O 058; and K2O 069.All calculations were carried out using a non-linear Newton–Raphsonnumerical procedure. KEY WORDS: mineral–melt equilibria; alkalic–tholeiitic basalts; equilibrium thermodynamics *Corresponding author  相似文献   

12.
Olivine + clinopyroxene ± amphibole cumulates have beenwidely documented in island arc settings and may constitutea significant portion of the lowermost arc crust. Because ofthe low melting temperature of amphibole (1100°C), suchcumulates could melt during intrusion of primary mantle magmas.We have experimentally (piston-cylinder, 0·5–1·0GPa, 1200–1350°C, Pt–graphite capsules) investigatedthe melting behaviour of a model amphibole–olivine–clinopyroxenerock, to assess the possible role of such cumulates in islandarc magma genesis. Initial melts are controlled by pargasiticamphibole breakdown, are strongly nepheline-normative and areAl2O3-rich. With increasing melt fraction (T > 1190°Cat 1·0 GPa), the melts become ultra-calcic while remainingstrongly nepheline-normative, and are saturated with olivineand clinopyroxene. The experimental melts have strong compositionalsimilarities to natural nepheline-normative ultra-calcic meltinclusions and lavas exclusively found in arc settings. Theexperimentally derived phase relations show that such naturalmelt compositions originate by melting according to the reactionamphibole + clinopyroxene = melt + olivine in the arc crust.Pargasitic amphibole is the key phase in this process, as itlowers melting temperatures and imposes the nepheline-normativesignature. Ultra-calcic nepheline-normative melt inclusionsare tracers of magma–rock interaction (assimilative recycling)in the arc crust. KEY WORDS: experimental melting; subduction zone; ultra-calcic melts; wehrlite  相似文献   

13.
Kimberlites from the Kaapvaal craton have sampled numerous mantlegarnet lherzolites in addition to garnet harzburgites. Traceelement characteristics of constituent clinopyroxenes allowtwo groups of garnet lherzolites to be distinguished. Traceelement compositions of all clinopyroxenes are characterizedby enrichment in light rare earth elements (LREE) and largeion lithophile elements and by a relative depletion in Ti, Nb,Ta, and to a lesser extent Zr and Hf. However, the LREE enrichmentand the depletion in Nb and Zr (Hf) are less in the Type 1 clinopyroxenesthan in the Type 2 clinopyroxenes. Our study suggests that thetwo melts responsible for the metasomatic imprints observedin the two garnet lherzolite groups are highly alkaline maficsilicate melts. Type 1 clinopyroxenes that have trace elementsimilarities to those of PIC (Phlogopite–Ilmenite–Clinopyroxene)rocks appear to have crystallized from, or been completely equilibratedwith, the same melt related to Group I kimberlite magma. TheType 2 clinopyroxenes have trace element similarities to thoseof MARID (Mica– Amphibole–Rutile–Ilmenite–Diopside)rocks and are therefore probably linked to melt related to GroupII kimberlite magma. KEY WORDS: garnet lherzolites; Kaapvaal craton; mantle xenoliths; mantle metasomatism; trace elements  相似文献   

14.
The effects of small amounts of H2O (<4 wt % in the melt)on the multiply saturated partial melting of spinel lherzolitein the system CaO–MgO–Al2O3–SiO2 ±Na2O ± CO2 have been determined at 1·1 GPa inthe piston-cylinder apparatus. Electron microprobe analysisand Fourier transform infrared spectroscopy were used to analysethe experimental products. The effects of H2O are to decreasethe melting temperature by 45°C per wt % H2O in the melt,to increase the Al2O3 of the melts, decrease MgO and CaO, andleave SiO2 approximately constant, with melts changing fromolivine- to quartz-normative. The effects of CO2 are insignificantat zero H2O, but become noticeable as H2O increases, tendingto counteract the H2O. The interaction between H2O and CO2 causesthe solubility of CO2 at vapour saturation to increase withincreasing H2O, for small amounts of H2O. Neglect of the influenceof CO2 in some previous studies on the hydrous partial meltingof natural peridotite may explain apparent inconsistencies betweenthe results. The effect of small amounts of H2O on multiplysaturated melt compositions at 1·1 GPa is similar tothat of K2O, i.e. increasing H2O or K2O leads to quartz-normativecompositions, but increasing Na2O produces an almost oppositetrend, towards nepheline-normative compositions. KEY WORDS: H2O; CO2; FTIR; hydrous partial melting; mantle melting; spinel lherzolite; system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O  相似文献   

15.
We explore the partial melting behavior of a carbonated silica-deficienteclogite (SLEC1; 5 wt % CO2) from experiments at 3 GPa and comparethe compositions of partial melts with those of alkalic andhighly alkalic oceanic island basalts (OIBs). The solidus islocated at 1050–1075 °C and the liquidus at 1415 °C.The sub-solidus assemblage consists of clinopyroxene, garnet,ilmenite, and calcio-dolomitic solid solution and the near solidusmelt is carbonatitic (<2 wt % SiO2, <1 wt % Al2O3, and<0·1 wt % TiO2). Beginning at 1225 °C, a stronglysilica-undersaturated silicate melt (34–43 wt % SiO2)with high TiO2 (up to 19 wt %) coexists with carbonate-richmelt (<5 wt % SiO2). The first appearance of carbonated silicatemelt is 100 °C cooler than the expected solidus of CO2-freeeclogite. In contrast to the continuous transition from carbonateto silicate melts observed experimentally in peridotite + CO2systems, carbonate and silicate melt coexist over a wide temperatureinterval for partial melting of SLEC1 carbonated eclogite at3 GPa. Silicate melts generated from SLEC1, especially at highmelt fraction (>20 wt %), may be plausible sources or contributingcomponents to melilitites and melilititic nephelinites fromoceanic provinces, as they have strong compositional similaritiesincluding their SiO2, FeO*, MgO, CaO, TiO2 and Na2O contents,and CaO/Al2O3 ratios. Carbonated silicate partial melts fromeclogite may also contribute to less extreme alkalic OIB, asthese lavas have a number of compositional attributes, suchas high TiO2 and FeO* and low Al2O3, that have not been observedfrom partial melting of peridotite ± CO2. In upwellingmantle, formation of carbonatite and silicate melts from eclogiteand peridotite source lithologies occurs over a wide range ofdepths, producing significant opportunities for metasomatictransfer and implantation of melts. KEY WORDS: carbonated eclogite; experimental phase equilibria; partial melting; liquid immiscibility; ocean island basalts  相似文献   

16.
Crystallization temperatures (T) and oxygen fugacities (fO2)of kimberlite magma are estimated from oxides included in olivinephenocrysts from the Leslie, Aaron, Grizzly and Torrie kimberlitepipes in the central Slave Province, Canada. Crystallizationtemperatures recorded by olivine–chromite pairs at anassumed pressure of 1·0 GPa are 1030–1170°C± 50°C, with a mean of  相似文献   

17.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

18.
Experimental Melting of Carbonated Peridotite at 6-10 GPa   总被引:2,自引:0,他引:2  
Partial melting of magnesite-bearing peridotites was studiedat 6–10 GPa and 1300–1700°C. Experiments wereperformed in a multianvil apparatus using natural mineral mixesas starting material placed into olivine containers and sealedin Pt capsules. Partial melts originated within the peridotitelayer, migrated outside the olivine container and formed poolsof quenched melts along the wall of the Pt capsule. This allowedthe analysis of even small melt fractions. Iron loss was nota problem, because the platinum near the olivine container becamesaturated in Fe as a result of the reaction Fe2SiO4Ol = FeFe–Ptalloy + FeSiO3Opx + O2. This reaction led to a gradual increasein oxygen fugacity within the capsules as expressed, for example,in high Fe3+ in garnet. Carbonatitic to kimberlite-like meltswere obtained that coexist with olivine + orthopyroxene + garnet± clinopyroxene ± magnesite depending on P–Tconditions. Kinetic experiments and a comparison of the chemistryof phases occasionally grown within the melt pools with thosein the residual peridotite allowed us to conclude that the meltshad approached equilibrium with peridotite. Melts in equilibriumwith a magnesite-bearing garnet lherzolite are rich in CaO (20–25wt %) at all pressures and show rather low MgO and SiO2 contents(20 and 10 wt %, respectively). Melts in equilibrium with amagnesite-bearing garnet harzburgite are richer in SiO2 andMgO. The contents of these oxides increase with temperature,whereas the CaO content becomes lower. Melts from magnesite-freeexperiments are richer in SiO2, but remain silicocarbonatitic.Partitioning of trace elements between melt and garnet was studiedin several experiments at 6 and 10 GPa. The melts are very richin incompatible elements, including large ion lithophile elements(LILE), Nb, Ta and light rare earth elements. Relative to theresidual peridotite, the melts show no significant depletionin high field strength elements over LILE. We conclude fromthe major and trace element characteristics of our experimentalmelts that primitive kimberlites cannot be a direct productof single-stage melting of an asthenospheric mantle. They rathermust be derived from a previously depleted and re-enriched mantleperidotite. KEY WORDS: multianvil; carbonatite melt; peridotite; kimberlite; element partitioning  相似文献   

19.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

20.
Mineral and melt inclusions in olivines from the most Mg-richmagma from the southern West Sulawesi Volcanic Province indicatethat two distinct melts contributed to its petrogenesis. Thecontribution that dominates the whole-rock composition comesfrom a liquid with high CaO (up to 16 wt %) and low Al2O3 contents(CaO/Al2O3 up to 1), in equilibrium with spinel, olivine (Fo85–91;CaO 0·35–0·5 wt %; NiO 0·2–0·30wt %) and clinopyroxene. The other component is richer in SiO2(>50 wt %) and Al2O3 (19–21 wt %), but contains significantlyless CaO (<4 wt %); it is in equilibrium with Cr-rich spinelwith a low TiO2 content, olivine with low CaO and high NiO content(Fo90–94; CaO 0·05–0·20 wt %; NiO0·35–0·5 wt %), and orthopyroxene. Boththe high- and low-CaO melts are potassium-rich (>3 wt % K2O).The high-CaO melt has a normalized trace element pattern thatis typical for subduction-related volcanic rocks, with negativeTa–Nb and Ti anomalies, positive K, Pb and Sr anomalies,and a relatively flat heavy rare earth element (HREE) pattern.The low-CaO melt shows Y and HREE depletion (Gdn/Ybn 41), butits trace element pattern resembles that of the whole-rock andhigh-CaO melt in other respects, suggesting only small distinctionsin source areas between the two components. We propose thatthe depth of melting and the dominance of H2O- or CO2-bearingfluids were the main controls on generating these contrastingmagmas in a syn-collisional environment. The composition ofthe low-CaO magma does not have any obvious rock equivalent,and it is possible that this type of magma does not easily reachthe Earth's surface without the assistance of a water-poor carriermagma. KEY WORDS: melt inclusions; mineral chemistry; olivine; syn-collisional magmatism; ankaramites; low-Ca magma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号