首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study analyses the performance of residential buildings in the town of Hveragerði in South Iceland during the 29 May 2008 Mw 6.3 Ölfus Earthquake. The earthquake occurred very close to the town, approximately 3–4 km from it. Ground shaking caused by the earthquake was recorded by a dense strong-motion array in the town. The array provided high-quality three-component ground acceleration data which is used to quantify a hazard scenario. In addition, surveys conducted in the town in the aftermath of the earthquake have provided information on macroseismic intensity at various locations in the town. Detailed information regarding the building stock in the town is collected, and their seismic vulnerability models are created by using building damage data obtained from the June 2000 South Iceland earthquakes. Damage to buildings are then simulated by using the scenario hazard and vulnerability models. Damage estimates were also obtained by conducting a survey. Simulated damage based on the scenario macroseismic intensity is found to be similar to damage estimated from survey data. The buildings performed very well during the earthquake—damage suffered was only 5 % of the insured value on the average. Correlation between actual damage and recorded ground-motion parameters is found to be statistically insignificant. No significant correlation of damage was observed, even with macroseismic intensity. Whereas significant correlation was observed between peak ground velocity and macroseismic intensity, neither of them appear to be good indicators of damage to buildings in the study area. This lack of correlation is partly due to good seismic capacity of buildings and partly due to the ordinal nature of macroseismic intensity scale. Consistent with experience from many past earthquakes, the survey results indicate that seismic risk in South Iceland is not so much due to collapse of buildings but rather due to damage to non-structural components and building contents.  相似文献   

2.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

3.
Modelling seismic attenuation is one of the most critical points in the hazard assessment process. In this article we consider the spatial distribution of the effects caused by an earthquake as expressed by the values of the macroseismic intensity recorded at various locations surrounding the epicentre. Considering the ordinal nature of the intensity, a way to show its decay with distance is to draw curves—isoseismal lines—on maps, which bound points of intensity not smaller than a fixed value. These lines usually take the form of closed and nested curves around the epicentre, with highly different shapes because of the effects of ground conditions and of complexities in rupture propagation. Forecasting seismic attenuation of future earthquakes requires stochastic modelling of the decay on the basis of a common spatial pattern. The aim of this study is to consider a statistical methodology that identifies a general shape, if it exists, for isoseismal lines of a set of macroseismic fields. Data depth is a general nonparametric method for analysis of probability distributions and datasets. It has arisen as a statistical method to order points of a multivariate space, e.g., Euclidean space \({\mathbb {R}}^{p}\), \(p \ge 1\), according to the centrality with respect to a distribution or a given data cloud. Recently, this method has been extended to the ordering of functions and trajectories. In our case, for a fixed intensity decay \(\varDelta I\), we build a set of convex hulls that enclose the sites of felt intensity \(I_s \ge I_0 -\varDelta I\), one for each macroseismic field of a set of earthquakes that are considered as similar from the attenuation point of view. By applying data depth functions to this functional dataset, it is possible to identify the most central curve, i.e., the attenuation pattern, and to consider other properties like variability, outlyingness, and possible clustering of such curves. Results are shown for earthquakes that occurred on the Central Po Plain in May 2012, and on the eastern flank of Mt. Etna since 1865.  相似文献   

4.
In the framework of the SIGMA project, a study was launched to develop a parametric earthquake catalog for the historical period, covering the metropolitan territory and calibrated in Mw. A set of candidate calibration events was selected corresponding to earthquakes felt over a part of the French metropolitan territory, which are fairly well documented both in terms of macroseismic intensity distributions (SisFrance BRGM-EDF-IRSN) and magnitude estimates. The detailed analysis of the macroseismic data led us to retain only 30 events out of 65 with Mw ranging from 3.6 to 5.8. In order to supplement the dataset with data from larger magnitude events, Italian earthquakes were also considered (11 events posterior to 1900 with Mw?≥?6.0 out of 15 in total), using both the DBMI11 macroseismic database (Locati et al. in Seismol Resour Lett 85(3):727–734, 2014) and the parametric information from the CPTI11 (Rovida et al. in CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani Istituto Nazionale di Geofisica et Vulcanologia, Milano, Bologna, 2011.  https://doi.org/10.6092/ingv.it-cpti11). To avoid introducing bias related to the differences in terms of intensity scales (MSK vs. MCS), only intensities smaller than or equal to VII were considered (Traversa et al. in On the use of cross-border macroseismic data to improve the estimation of past earthquakes seismological parameters, 2014). Mw and depth metadata were defined according to the Si-Hex catalogue (Cara et al. in Bull Soc Géol Fr 186:3–19, 2015.  https://doi.org/10.2113/qssqfbull.186.1.3), published information, and to the specific worked conducted within SIGMA related to early instrumental recordings (Benjumea et al. in Study of instrumented earthquakes that occurred during the first part of the 20th century (1905–1962), 2015). For the depth estimates, we also performed a macroseismic analysis to evaluate the range of plausible estimates and check the consistency of the solutions. Uncertainties on the metadata related to the calibration earthquakes were evaluated using the range of available alternative estimates. The intensity attenuation models were developed using a one-step maximum likelihood scheme. Several mathematical formulations and sub-datasets were considered to evaluate the robustness of the results (similarly to Baumont and Scotti in Accounting for data and modeling uncertainties in empirical macroseismic predictive equations (EMPEs). Towards “European” EMPEs based on SISFRANCE, DBMI, ECOS macroseismic database, 2008). In particular, as the region of interest may be characterized by significant laterally varying attenuation properties (Bakun and Scotti in Geophys J Int 164:596–610, 2006; Gasperini in Bull Seismol Soc Am 91:826–841, 2001), we introduced regional attenuation terms to account for this variability. Two zonation schemes were tested, one at the national scale (France/Italy), another at the regional scale based on the studies of Mayor et al. (Bull Earthq Eng, 2017.  https://doi.org/10.1007/s10518-017-0124-8) for France and Gasperini (2001) for Italy. Between and within event residuals were analyzed in detail to identify the best models, that is, the ones associated with the best misfit and most limited residual trends with intensity and distance. This analysis led us to select four sets of models for which no significant trend in the between- and within-event residuals is detected. These models are considered to be valid over a wide range of Mw covering?~?3.5–7.0.  相似文献   

5.
A method is suggested for the analysis of macroseismic intensity data in order to accurately determine an average attenuation structure of the upper part of the crust in an area. The method is based on a model which assumes that the observed intensities depend on source properties (radiation pattern, size, focal depth), geometrical spreading and anelastic attenuation. The method is applied to 13,008 intensity values, observed in corresponding sites of Greece and grouped (in 4228 groups), according to their spatial clustering in order to diminish observational errors and site effects. An average intensity attenuation coefficient,c=–0.0039±0.0016, corresponding to a quality factor, Q=350±140, is determined for the upper 20 km of the crust in this area. This value is relatively low, in good agreement with the relatively high heat flow and high seismic activity of this area. A byproduct of the present study is the determination, for each earthquake, of a macroseismic focal depth and of a macroseismic size, which is strongly correlatted with both the earthquake's magnitude and its seismic moment determined by independent methods.  相似文献   

6.
The present study is devoted to the assessment of shaking intensities due to the September 17, 2003, earthquake occurring in the Khoito-Gol basin (southwestern flank of the Baikal Rift System). The instrumental and macroseismic data used here were acquired during an investigation into the impact of this seismic event. The highest intensity of shaking, VI, was recorded at Khoito-Gol, the human settlement that was the nearest to the instrumental epicenter. A nonuniform distribution of intensity was found for different directions from the epicenter. A scatter of as much as two intensity units was recorded at one settlement.  相似文献   

7.
The epicentral zone and settlements that suffered from the M S = 6.1 earthquake in the northwest Amur oblast are examined. Only secondary seismic dislocations were revealed and mapped in detail. The inspection of settlements and inhabitansts inquiry allowed estimation of the intensity of the macroseismic effect based on the MSK-64 scale. These forthwith primary factual data give an idea on the shaking intensity at the distant and nearest zones and precise location of the earthquake focus. The map of isoseists of the highest (7–8) intensity is drawn.  相似文献   

8.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

9.
The 2003 Ml = 5.4 Rambervillers earthquake, north-east of France, is the largest seismic event recorded north of the Alps since the 1992 Ms = 5.3, I0 = VII, Roermond earthquake, Netherlands. With a maximum macroseismic intensity of VI-VII EMS-98, the 2003 event was broadly felt to a distance of 300 km from the epicentre. It provides a unique opportunity to test and compare the different procedures used in France, Germany and Switzerland when evaluating macroseismic intensities. The main purpose of this paper is to present a common transfrontier macroseismic map based on the EMS-98 intensity scale. Maximum horizontal accelerations recorded in the area are compared to the intensity values, and we propose to use a differential technique to re-estimate the magnitude of the 1682 Remiremont, I0 = VIII, earthquake, which occurred 40 km south of Rambervillers.  相似文献   

10.
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408–1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337–353, 2006), Zhang et al. (Geophys J Int 190(1):358–378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.  相似文献   

11.
The possibility to obtain a more complete and unbiased long-term history of seismic shakings over large territories than is explicitly reported from inhabited localities is discussed in the paper. An approach proposed for this purpose consists in complementing the spatial distribution of the macroseismic effect of earthquakes by calculated intensities at localities where information on felt shakings is absent. The calculated intensity is obtained on the basis of data on the epicentral intensity and location of epicenters provided by earthquake catalogs. This approach is applied to the analysis of the history of seismic shaking in Spain. The calculated intensities are shown to be comparable in accuracy with the ordinary practice of intensity determinations at national seismological centers.  相似文献   

12.
Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489–508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93–165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489–508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.  相似文献   

13.
Site effect is usually associated with local geological conditions, which increase or decrease the level of shaking compared with standard attenuation relations. We made an attempt to see in the macroseismic data of Italy some other effects, namely, hot/cold spots in the terminology of Olsen (in Bull. Seismol. Soc. Am. 90, 6B, 577?C594, 2000), which are related to local fault geometry rather than to soil conditions. We give a list of towns and villages liable to amplify (+) or to reduce (?C) the level of shaking in comparison with the nearby settlements. Relief and soil conditions cannot always account for the anomalous sites. Further, there are sites where both (+) and (?C) effects are observed depending on the earthquake. The opposite effects can be generated by events from the same seismotectonic zone and along the same direction to the site. Anomalous sites may group themselves into clusters of different scales. All isolated anomalous patterns presented in this paper can be used in hazard analysis, in particular, for the modeling and testing of seismic effects.  相似文献   

14.
The points with normal, anomalously low, and anomalously high shaking intensities are recognized in the spatial distribution of macroseismic effects from the 1991 Racha earthquake, Greater Caucasus. Distribution of these points in the epicentral area is not random. Comparison between this distribution and the results of local tomography reveals that seismic wave velocities do not increase in the upper layers (from 0 to 3 km) beneath the points with anomalously high intensity, while a sharp increase in velocity is observed in the depth interval from 6 to 9 km. An original method of b-value mapping is suggested. Application of the method demonstrates that anomalously low intensities correlate to high b-values. This likely reflects higher intensity attenuation associated with higher b-value.  相似文献   

15.
The macroseismic field of the Balkan area   总被引:1,自引:0,他引:1  
A catalogue of 356 macroseimic maps which are available for the Balkan area was compiled, including information on the source parameters of the corresponding earthquakes, the macroseismic parameters of their strength and their macroseismic field. The data analysis of this catalogue yields new empirical relations for attenuation, which can be applied for the calibration of historical events, modelling of isoseismals and seismic hazard assessment. An appropriate analysis allowed the separation and estimation of the average values of the geometrical spreading, n, and anelastic attenuation factor, c, for the examined area which were found equal to –3.227 ± 0.112 and –0.0033 ± 0.0010. Scaling relations for the focal macroseismic intensity, If, and the epicentral intensity I0, versus the earthquake moment magnitude were also determined for each Balkan country. A gradual decrease of the order of 0.5 to 1 intensity unit is demonstrated for recent (after 1970) earthquakes in Greece. Finally the depths of the examined earthquakes as they robustly determined (error <5 km) on the basis of macroseismic data were found to have small values ( 10 km). However large magnitude earthquakes show higher focal depths ( 25 km), in accordance with an increase of the seismic fault dimensions for such events.  相似文献   

16.
17.
This paper overviews the procedures and tools used for a systematic study of the macroseismic consequences caused by a strong earthquake that struck Southern Italy. The event referred to the 23 November 1980 (Io = X MCS, Ms = 6.9) which affected the Campania and Basilicata regions. Two aspects are addressed here: to broaden the knowledge of the macroseismic field and delineate damage maps of the sites affected on an urban scale. The target area of this study is the Basilicata region about which the current macroseismic information is poor. This research study, based only on unpublished documentary sources, supplies about 50 new assessments and about 30 new re-assessments of the macroseismic site intensity (MCS scale) as outputs. Moreover, about 80 thematic maps showing the damage pattern of the sites affected are also supplied. It is the first time that a large earthquake has been the subject of such extensive studies from a macroseismic point of view, with special attention to the analysis of damage effects at town scale.  相似文献   

18.
A vulnerability analysis of c.300 unreinforced Masonry churches in New Zealand is presented. The analysis uses a recently developed vulnerability index method (Cattari et al. in Proceedings of the New Zealand Society for Earthquake Engineering NZSEE 2015 conference, Rotorua, New Zealand, 2015a; b; SECED 2015 conference: earthquake risk and engineering towards a Resilient World, Cambridge; Goded et al. in Vulnerability analysis of unreinforced masonry churches (EQC 14/660)—final report, 2016; Lagomarsino et al. in Bull Earthq Eng, 2018), specifically designed for New Zealand churches, based on a widely tested approach for European historical buildings. It consists of a macroseismic approach where the seismic hazard is defined by the intensity and correlated to post seismic damage. The many differences in typologies of New Zealand and European churches, with very simple architectural designs and a majority of one nave churches in New Zealand, justified the need to develop a method specifically created for this country. A statistical analysis of the churches damaged during the 2010–2011 Canterbury earthquake sequence was previously carried out to develop the vulnerability index modifiers for New Zealand churches. This new method has been applied to generate seismic scenarios for each church, based on the most likely seismic event for 500 years return period, using the latest version of New Zealand’s National Seismic Hazard Model. Results show that highly vulnerable churches (e.g. stone churches and/or with a weak structural design) tend to produce higher expected damage even if the intensity level is lower than for less vulnerable churches in areas with slightly higher seismicity. The results of this paper provide a preliminary tool to identify buildings requiring in depth structural analyses. This paper is considered as a first step towards a vulnerability analysis of all the historical buildings in the country, in order to preserve New Zealand’s cultural and historical heritage.  相似文献   

19.
According to the idea now widespread that macroseismic intensity should be expressed in probabilistic terms, a beta-binomial model has been proposed in the literature to estimate the probability of the intensity at site in the Bayesian framework and a clustering procedure has been adopted to define learning sets of macroseismic fields required to assign prior distributions of the model parameters. This article presents the results concerning the learning sets obtained by exploiting the large Italian macroseismic database DBM1I11 (Locati et al. in DBMI11, the 2011 version of the Italian Macroseismic Database, 2011. http://emidius.mi.ingv.it/DBMI11/) and discusses the problems related to their use in probabilistic modelling of the attenuation in seismic regions of the European countries partners of the UPStrat-MAFA project (2012), namely South Iceland, Portugal, SE Spain and Mt Etna volcano area (Italy). Anisotropy and the presence of offshore earthquakes are some of the problems faced. All the work has been carried out in the framework of the Task B of the project.  相似文献   

20.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号