首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The broadband electrostatic turbulence generally observed in the high-latitude ionosphere is a superposition of nonlocal waves of ion-acoustic and ion-cyclotron types. In the presence of a shear of ion parallel velocity, ion-acoustic modes can be induced by an instability emerging due to an inhomogeneous distribution of energy density. This paper is devoted to the studies of excitation of oblique ion-acoustic wave in background configurations with inhomogeneous profiles of both electric field and ion parallel velocity. A numerical algorithm has been developed, and instability was simulated at various parameters of background plasma. The general possibility of oblique ion-acoustic wave generation by a gradient of ion parallel velocity is shown. In this case, the wave spectrum is found to be broadband, which agrees with satellite observations.  相似文献   

2.
The generation and further nonlinear dynamics of internal gravity wave (IGW) structures in a dissipative ionosphere in the presence of an inhomogeneous zonal wind (shear flow) have been studied. The effectiveness of the IGW amplification mechanism during the interaction with an inhomogeneous zonal wind is analyzed based on the corresponding model system of nonlinear dynamic equations constructed in (Aburjania et al., 2013). It has been indicated that IGWs effectively obtain the shear flow energy at the initial linear evolution stage and substantially (by an order of magnitude) increase their amplitude and, correspondingly, energy. The nonlinear self-localization mechanism starts operating with increasing amplitude, and the process terminates with the self-organization of nonlinear solitary strongly localized vortex structures. A new degree of system freedom and the disturbance evolution trend in a medium with a shear flow appear in such a way. Nonlinear IGW structures can be a purely monopoly vortex, a transverse vortex chain, and/or a longitudinal vortex path against the background of an inhomogeneous zonal wind, depending on the shear flow velocity profile. The accumulation of such vortices in the ionospheric medium can generate a strongly turbulent state.  相似文献   

3.
The generation and further linear and nonlinear dynamics of planetary ultra-low-frequency (ULF) waves are investigated in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow). Planetary ULF magnetized Rossby type waves appear as a result of interaction of the medium with the spatially inhomogeneous geomagnetic field. An effective linear mechanism responsible for the intensification and mutual transformation of large scale magnetized Rossby type and small scale inertial waves is found. For shear flows, the operators of the linear problem are not self-conjugate, and therefore the eigenfunctions of the problem may not be orthogonal and can hardly be studied by the canonical modal approach. Hence, it becomes necessary to use the so-called nonmodal mathematical analysis. The nonmodal analysis shows that the transformation of wave disturbances in shear flows is due to the non-orthogonality of eigenfunctions of the problem in the conditions of linear dynamics. Using numerical modeling, the peculiar features of the interaction of waves with the background flow as well as the mutual transformation of wave disturbances are illustrated in the ionosphere. It has been shown that the shear flow driven wave perturbations effectively extract an energy of the shear flow increasing the own energy and amplitude. These perturbations undergo self-organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation’s front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices or vortex streets and vortex chains.  相似文献   

4.
本文得出了高β等离子体中在速度梯度、密度梯度、磁场梯度和温度梯度联合作用下的一种新的不稳定模:漂移动力学磁声-Alfvèn模,导出了线性色散关系,研究了模的特性并讨论了高β和各种梯度项对该模的影响,估算了垂直扩散系数。计算表明,在地球磁层顶边界区中漂移动力学磁声-Alfvèn模总是不稳定的。随着β增加,增长率起初增大,而后减小,这是此模的一个显著特性;速度梯度是驱动此模的重要自由能源;当扰动磁场为1nT时,垂直扩散系数可达~109m2/s。从而说明漂移动力学磁声-Alfvèn模不稳定性产生的反常输运,有可能维持准定常的磁层对流,并且在边界层的形成中起重要作用。  相似文献   

5.
Jon Albretsen 《Ocean Dynamics》2007,57(4-5):287-304
We perform eddy-permitting to eddy-resolving simulations of the Skagerrak/northern North Sea with a terrain-following numerical ocean model. We demonstrate that realistic representations of freshwater input are not required when the focus is on modelling mesoscale structures such as meanders and eddies. To arrive at this conclusion, we analyze the results using a recently developed energy diagnostic scheme to study the sensitivity to realistic representations of the lateral freshwater flux provided to the area from the Baltic Sea and by the major rivers. The scheme is suitable for analysis of growth of instabilities, and it has four basic instability processes prominent. We recognize both horizontal and vertical shear instabilities. There are two processes where average potential energy is converted to eddy kinetic energy, and they are related to the mean gradient in surface elevation and the mean lateral density gradient, respectively. The latter process is known as frontal instability. We demonstrate that the change in the eddy kinetic energy field is small, despite the large variations in the hydrographic properties from experiment to experiment. Moreover, generation of eddy activity appears at the same locations and with approximately the same strength regardless of actual representations of freshwater input. Furthermore, we find that vertical shear instability dominates the energy conversion processes in the Norwegian Coastal Current. Finally, we find that the areas off the northwest coast of Denmark recognized with enhanced eddy kinetic energy level is not caused by instability processes but eddy–eddy interaction rooted in variations in the sea level.  相似文献   

6.
本文基于二维三分量可压缩磁流体动力学模拟,数值研究由于磁力线足点在光球层的剪切运动引起日冕电流片中的磁场重联过程。结果表明,磁力线足点的剪切运动作为引起强迫磁场重联的一种触发机制,将加速磁场重联的发展和磁岛的合并过程。结合不稳定性导致等离子体急剧加速,在β=0.1的情况下其加速度达到0.34νA∞/τA,等离子体的最大下落速度可达1.90νA∞,大于纯电阻撕裂模情况。还讨论了β值对这种磁场重联过程的影响。β值越小,磁场重联和磁岛合并过程发展得越快。  相似文献   

7.
Love wave dispersion in various semi-infinite media consisting of inhomogeneous layers is discussed. The phase and group velocities are computed when shear wave velocity and density in each inhomogeneous layer are varying exponentially with depth. At the beginning one or two inhomogeneous layers over a homogeneous semi-infinite medium are considered. The dispersion results for these structures are compared with those for their approximations with homogeneous layers. Comparisons show that differences of phase and group velocities for the original models from those for their approximated models (i) increase with the increase of wave number and (ii) are larger for group velocity than for phase velocity. The difference is approximately proportional to the rate of change of parameters in the layers. Finally, dispersion curves are obtained for model IP3MC, which consists of many inhomogeneous and homogeneous layers over a homogeneous semi-infinite medium. The results are compared with the observed group velocity data across the Indian Peninsula.  相似文献   

8.
It is common knowledge that the night-time ionosphere at the middle and moderately high latitudes is sustained by the charged particle flux arriving from plasmasphere along magnetic field lines. The downward directed particle velocity in this flux decreases with the decreasing height. It provides a potential source for plasma instability. This should be interpreted in such a way that the initial density perturbations increase with the time, and are enhanced as they propagate in space. In this paper we have carried out investigations of topside ionosphere plasma stability on the basis of solving the dispersion equation for low-frequency waves in a weakly inhomogeneous medium. Also analysis have been made of propagation of the waves within ray approximation. Is shown, that of irregularities, extending down accrue on intensity up to heights of a maximum of layer F2, and are loss in low layers of ionosphere.  相似文献   

9.
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10–10−6) s−1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.  相似文献   

10.
Plasma inhomogeneities extending along geomagnetic field lines in the ionosphere and magnetosphere can have a vortex structure. Electromagnetic waves can propagate in plasma inhomogeneities in the waveguide channel mode. It has been indicated that energy and particle fluxes related to the development of small-scale electrostatic turbulence in a magnetized plasma with an unstable electron component promotes an increase in plasma density gradients in the walls of waveguide channels and an enhancement in plasma vortices. At low L shells in the region of the geomagnetic equator, the development of plasma electrostatic instability and the damping of drifting plasma vortices in the inhomogeneous geomagnetic field in the topside ionosphere can be the main mechanism by which large-scale (∼1000 km) regions with a decreased plasma density are formed.  相似文献   

11.
Plasma vortices in the ionosphere and atmosphere   总被引:1,自引:0,他引:1  
Vortices observed in ionized clouds of thunderstorm fronts have the nature of plasma vortices. In this work, the need to account for the electrostatic instability of plasma in the origination, intensification, and decay of plasma vortices in the atmosphere is shown. Moisture condensation results in mass-energy transfer under the inhomogeneous spatial distribution of aerosols. If a phase volume of natural oscillations is transformed in the frequency-wave vector space in inhomogeneous plasma, the damping of plasma oscillations promotes an increase in the pressure gradients normal to the geomagnetic field. Excitation of the gradient instabilities is probable in atmospheric plasma formations.  相似文献   

12.
The linear mechanism by which internal gravity waves (IGWs) are generated and subsequently intensified in a stably stratified dissipative ionosphere in the presence of an inhomogeneous zonal wind (shear flow) has been studied. In the case of shear flows, the operators of linear problems are nonself-adjoint and the corresponding eigenfunctions are nonorthogonal; a canonical approach can hardly be used to study such motions. It is more adequate to apply the so-called nonmodal calculation. Dynamic equations and equations of energy transfer of IGW disturbances in the ionosphere with a shear flow have been obtained based on a nonmodal approach. Exact analytical solutions for the constructed dynamic equations have been found. The growth rate of the IGW shear instability has been determined. It has been established that IGW disturbances are intensified in an algebraically power manner rather than exponentially in the course of time. The effectiveness of the linear mechanism by which IGWs are intensified when interacting with an inhomogeneous zonal wind is analyzed. It has been indicated that IGWs effectively obtain the shear flow energy during the linear evolution stage and substantially increase (by an order of magnitude) their amplitude and energy. The frequency and the wave vector of generated IGW modes depend on time; therefore, a wide spectrum of wavelike disturbances, depending on the linear, rather than nonlinear, turbulent effects, is formed in the ionosphere with a shear flow. Thereby, a new degree of freedom appears, and the turbulent state of atmospheric—ionospheric layers can be formed on IGW disturbances.  相似文献   

13.
Abstract

The linear, normal mode instability of barotropic circular vortices with zero circulation is examined in the f-plane quasigeostrophic equations. Equivalents of Rayleigh's and Fjortoft's criteria and the semicircle theorem for parallel shear flow are given, and the energy equation shows the instability to be barotropic. A new result is that the fastest growing perturbation is often an internal instability, having a finite vertical scale, but may also be an external instability, having no vertical structure. For parallel shear flow the fastest growing perturbation is always an external instability; this is Squire's theorem. Whether the fastest growing perturbation is internal or external depends upon the profile: for mean flow streamfunction profiles which monotonically decrease with radius, the instability is internal for less steep profiles with a broad velocity extremum and external for steep profiles with a narrow velocity extremum. Finite amplitude, numerical model calculations show that this linear instability analysis is not valid very far into the finite amplitude range, and that a barotropic vortex, whose fastest growing perturbation is internal, is vertically fragmented by the instability.  相似文献   

14.
A vortex structure renders additional stability to plasma irregularities stretched along magnetic field lines. Plasma irregularities extended over several tens of kilometers are registered with rocket and satellite equipment in the topside ionosphere. The registered scale of irregularities depends on the spatial and time resolution of the equipment used. Irregular structures were registered in the ionosphere during experiments with barium clouds and jets, when a plasma irregularity separated into strata extended over several meters and several kilometers across the geomagnetic field. It has been indicated that plasma vortices can be generated in an unstable plasma in a situation when its quasi-neutrality is disturbed. Local geomagnetic field disturbances will be caused by the appearance of a proper vortex magnetic field. Plasma vortices can interact in an inhomogeneous plasma with an unstable electron component. Such interactions are related to the transformation of the phase volume of free electrostatic oscillations in the frequency-wave vector space.  相似文献   

15.
数值研究了引力场中电阻撕裂模不稳定性所引起的磁场重联,结果表明,在电流片长度L=1H、半宽度δ=H/24的情况下,电流片两端附近将出现两个X线的磁场重联,并形成磁岛和高温高密度的等离子体团.磁岛宽度随着时间而增长,在t≈55τ时达到饱和,最大饱和岛宽约为4δ.同时从t≈37τ开始,磁岛中心位置逐渐下降;在t=57τ时发生结合不稳定性,磁岛与底部附近的闭合磁场区合并,导致磁场湮灭和磁能的快速释放.另一方面,由于引力场和等离子体非均匀性的影响,顶部附近随时间而增长的等离子体外流速度达1.14VA∞;磁岛中等离子体向下运动的最大速度达1.41VA∞,且大于局地声速;在磁岛前方可形成快激波.这些结果可用于解释双带耀斑中后随耀斑环的形成、磁场湮灭和磁能释放、以及Doppler速度图上观测到的红移现象.  相似文献   

16.
利用GS流场重构方法研究磁尾等离子体片涡流   总被引:1,自引:1,他引:0       下载免费PDF全文
2000年9月30日Geotail卫星分别于17∶54∶36~18∶09∶00UT和18∶59∶00~19∶30∶00UT在磁尾晨侧等离子体片内(n≈0.4 cm-3,T≈6 keV)观测到等离子体涡流事件.本文采用Grad-Shafranov (GS)流场重构技术再现了这些涡流的二维速度场、离子数密度和离子温度的分布图像.结果显示:从地心太阳磁层坐标系(GSM)赤道面上面看, 涡流的尺度约为5000 km×1400 km , 朝地球的运动速度约为15~25 km/s.所有5个涡流的旋转方向都为顺时针方向,旋转周期约为6~11 min.相邻涡流的相互作用导致它们之间的磁场强度增强.考察观测数据发现,涡流内不仅包含等离子体片热等离子体成分,也包含较大通量的类似源自磁鞘的冷等离子体成分(T<1 keV).这与观测到涡流等离子体的平均温度(T≈4 keV)较磁尾等离子体片等离子体的典型温度(T≈6 keV)明显偏低的事实是一致的.不仅如此,离子数密度和温度在结构内的分布也不均匀,数密度在涡流内部偏离中心的位置比较低而在每个涡流的边缘位置比较高,温度的分布大体上与密度相反.分析认为观测到的磁尾等离子体涡流事件可能由发生在低纬边界层的Kelvin-Helmholtz不稳定性引起,涡流结构内的冷等离子体可能来自磁层顶外部的磁鞘.  相似文献   

17.
It is shown that ionosphere heating by DC electric field leads to instability of acoustic-gravity waves and to the formation of solitary internal gravity vortex structures. These dipole type vortices with characteristic transverse size of the order of several kilometers are propagated in the lower ionosphere with subsonic velocity. The threshold values of the electric field needed to suppress the wave damping caused by the interaction of induced current with the geomagnetic field and to provide the vortex generation are found. The considered physical mechanism is applicable to the generation of internal gravity vortices and related ionospheric disturbances when the ionosphere is influenced by the electric field of seismic origin exceeding the threshold value.  相似文献   

18.
19.
土体剪切带的模拟与机理分析   总被引:1,自引:0,他引:1  
采用修正剑桥模型,研究在平面应变条件下正常固结土剪切带的产生机理和剪切带形状的多样性。研究结果表明,剪切带是由材料的不均匀变形引起,并由试样局部应变能释放的冲击作用形成的;试样端部摩擦约束与试样内部初始缺陷都能够引起试样的不均匀变形进而诱发剪切带。分析了不同边界约束条件、初始缺陷设置方式及二者共同作用对剪切带形式的影响,平面应变条件下土体的剪切带有单一型、交叉型和多段型等3种形式,多段剪切带的发展具有先后顺序。  相似文献   

20.
The generation and further dynamics of the planetary magnetized Rossby waves and inertial waves in a dissipative ionosphere in the presence of a smooth inhomogeneous zonal wind (shear flow) have been studied. The magnetized Rossby waves are caused by the interaction with the spatially inhomogeneous geomagnetic field and represent the ionospheric manifestations of usual tropospheric Rossby waves. The effective linear mechanism of amplification and mutual transformation of the Rossby and inertial waves has been revealed. For shear flows, the operators of linear problems are not self-adjoint, and the corresponding eigenfunctions are non-orthogonal; therefore, a canonical modal approach is of little use in studying such motions. It becomes necessary to apply the so-called nonmodal mathematical analysis, which has actively been developed for the last years. The nonmodal approach makes it possible to reveal that the transformation of wave-like disturbances in shear flows is caused by the nonorthogonality of eigenfunctions in the problem of linear dynamics. Thus, there appear a new degree of the system freedom and a new way of disturbance evolution in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号