首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在台网比较稀疏的情况下,台站走时标定是提高低震级事件定位、识别能力的重要手段.为了提高稀疏台网的定位精度,首先利用标定事件和IASPEI1991走时表以及中国大陆走时表,计算了初至P波和Lg波到AAK,MAKZ,NIL,TLG以及WMQ等5个台站的走时残差;接着,采用非平稳贝叶斯克里金方法和走时残差数据构造上述台站的走时校正曲面;最后,通过加入和不加入走时校正定位一系列位置准确的发生在新疆地区的地震事件评估克里金走时校正的有效性.结果表明,克里金走时校正能够较大地提高稀疏台网的定位精度,同时有效地缩小误差椭圆的面积.   相似文献   

2.
—?An important requirement for a comprehensive seismic monitoring system is the capability to accurately locate small seismic events worldwide. Accurate event location can improve the probability of determining whether or not a small event, recorded predominantly by local and regional stations, is a nuclear explosion. For those portions of the earth where crustal velocities are not well established, reference event calibration techniques offer a method of increased locational accuracy and reduced locational bias.¶In this study, data from a set of mining events with good ground-truth data in the Powder River Basin region of eastern Wyoming are used to investigate the potential of event calibration techniques in the area. Results of this study are compared with locations published in the prototype International Data Center's Reviewed Event Bulletin (REB). A Joint Hypocenter Determination (JHD) method was applied to a s et of 23 events. Four of those events with superior ground-truth control (mining company report or Global Positioning System data) were used as JHD reference events. Nineteen (83%) of the solutions converged and the resulting set of station-phase travel-time corrections from the JHD results was then tested. When those travel-time corrections were applied individually to the four events with good ground-truth control, the average locational error reduced the original REB location error from 16.1?km to 5.7?km (65% improvement). The JHD locations indicated reduced locational bias and all of the individual error ellipses enclosed the actual known event locations.¶Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Associ ation of Seismology and the Physics of the Earth's Interior (IASPEI) travel-time tables, coupled with JHD-derived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.  相似文献   

3.
For faster and more robust ray tracing in 1-D velocity models and also due to the lack of reliable 3-D models, most seismological centers use 1-D models for routine earthquake locations. In this study, as solution to the coupled hypocenter-velocity problem, we compute a regional P-wave velocity model for southern Iran that can be used for routine earthquake location and also a reference initial model for 3-D seismic tomography. The inversion process was based on travel time data from local earthquakes paired reports obtained by merging the catalogues of Iranian Seismic Center (IRSC, 6422 events) and by the Broadband Iranian National Seismic Network (BIN, 4333 events) for southern Iran in the period 2006 through July 2017. After cleaning the data set from large individual reading errors and by identifying event reports from both networks belonging to same earthquake (a process called event pairing), we obtained a data set of 1115 well-locatable events with a total number of 24,606 P-wave observations. This data set was used to calculate a regional minimum 1-D model for southern Iran as result of an extensive model search by trial-and-error process including several dozens of inversions. Significantly different from previous models, we find a smoothly increasing P-velocity by depth with velocities of 5.8 km/s at shallow and velocities of 6.4 km/s at deepest crustal levels. For well-locatable events, location uncertainties are estimated in the order of ±?3 km for epicenter and double this uncertainty for hypocentral depth. The use of the minimum 1-D model with appropriate station delays in routine hypocenter location processing will yield a high-quality seismic catalogue with consistent uncertainty estimates across the region and it will also allow detection of outlier observations. Based on the two catalogues by IRSC and BIN and using the minimum 1-D model and station delays for all stations in the region, we established a new combined earthquake catalogue for southern Iran. While the general distribution of the seismicity corresponds well with that of the two individual catalogues by IRSC and BIN, the new catalogue significantly enhances the correlation of seismicity with the regional fault systems within and between the major crustal blocks that as an assembly build this continental region. Furthermore, the unified seismic catalogue and the minimum 1-D model resulting from this study provide important ingredients for seismic hazard studies.  相似文献   

4.
珠江口地区位于南海北部大陆的边缘,具有洋陆过渡型地壳特征,且NE向滨海断裂带从其中穿过,强震风险不可忽视。文中基于2015年珠江口海陆联合三维人工地震探测数据,人工进行初至P波震相拾取,并使用VELEST程序分别反演了陆域和海域的最小一维P波速度模型(走时残差均方根最小)和台站校正结果。台站校正结果的空间分布与区域地形、地质构造和沉积厚度相关较好,正值多分布在珠江三角洲沉积盆地和珠江口盆地内,而负值多分布在花岗岩等基岩出露地区以及滨海断裂带北侧和北部断阶带内的部分隆起地区。新模型对人工地震走时的拟合精度较高,陆域走时残差均方根为0.07s,海域为0.21s。与华南模型相比,新模型对区域地震定位的效果更好,重定位后,陆域的P波地震走时残差降低了22.6%、S波降低了21.2%;海域的P波地震走时残差降低了25.7%、S波降低了15.6%。新模型可为区域地震定位、地震参数和三维成像研究提供参考。  相似文献   

5.
华东地区台站偏差的研究   总被引:2,自引:0,他引:2  
用华东地区十年地震资料和迭代方法,在华东走时表的基础上,计算出百余地震台站的作为距离的函数的走时偏差值,将这些结果当做台站校正值用于地震定位,定位精度得到明显提高。  相似文献   

6.
—?The IASPEI91 global travel-time curves are used as the default for event location at the Prototype International Data Center (PIDC). In order to improve event location, a 1-D Baltic travel-time model was implemented at the PIDC in 1997 for locating events using regional phases from Fennoscandian stations. Where a single model is insufficient for characterizing the regional geology, path-dependent corrections, or Source Specific Station Corrections (SSSCs), are more appropriate for event locations. We have developed SSSCs for regional phases at the Fennoscandian stations by interpolating travel times through different 1-D models. SSSCs for stations NRIS and SPITS are also derived, given the fact that paths from both stations to high latitude events are within the Fennoscandia regionalization as Baltic.¶Validation testing of the SSSCs demonstrates that using SSSCs in event location is superior to not using SSSCs, a nd, in most cases, to using the 1-D model directly when locating events. For a ground-truth data set which includes events in the Baltic Shield with location accuracy better than 2?km, the average improvement in location due to SSSCs is 9?km, and the median coverage ellipse is reduced by 2710?km2 (from 3830 to 1120?km2). These results are similar to those obtained using the 1-D Baltic model. For a CEB (Calibration Event Bulletin) data set which includes events along the North Atlantic oceanic ridge and in central/southern Europe, using SSSCs the ridge events move closer to the ridge axis, and the European events move closer to CEB locations than 1-D Baltic locations. For a constrained JHD (Joint Hypocenter Determination) data set of events in the Novaya Zemlya region, when using SSSCs or the 1-D Baltic model, relative to the JHD locations mislocations are less or similar to those without SSSCs. All coverage ellipses are smaller but sti ll contain the JHD solutions.¶Our SSSCs are strongly dependent on the 1-D regional models and regionalization. Future development in 1-D velocity models and travel-time curves should improve such SSSCs, event locations, and uncertainties. It is hoped that the implementation and demonstration of SSSCs in the PIDC software will encourage these further developments. These SSSCs were implemented at the PIDC for Reviewed Event Bulletin (REB) location in April 1999.  相似文献   

7.
—?The verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) requires the determination of accurate location of seismic events from a fixed network of seismic stations across the globe. The requirements of possible on-site inspections mean that the goal is to place the location estimate in a zone smaller than 1000 km2 that includes the true location. Because a defined set of stations will be used, corrections can be refined to represent the influence of departures from the global reference model IASPEI91. The primary stations in the International Monitoring Scheme (IMS) are mostly seismic arrays and therefore the present location scheme is based on minimisation of a misfit function built from arrival time, azimuth and array slowness residuals. The effective network will change markedly with the magnitude of the event and as a result regional information has to be integrated into the location process.  相似文献   

8.
根据大震速报和快速预警实际需要,首先对Inglada线性单事件定位方法进行了适当的改进, 使其在仅有P波到时数据的情况下也能快速定位,且求解过程仅需简单迭代而不用奇异值分解; 其次, 尝试将改进后的方法从单层均匀模型引入到分层均匀模型中的近源台网定位情形,并通过单层均匀和分层均匀两种不同模型的理论实验讨论了该方法的可行性和适用范围; 最后整合了质量高且分布较好的距离2008年汶川MS8.0地震震中最近的强震、微震, 以及川西流动台阵等观测记录资料,对汶川MS8.0主震初始破裂点的时空参数进行了多种模型的定位实验. 结果表明, 改进后的线性单事件定位方法简单、快捷、易用,可广泛应用于近源地震定位,尤其是用于无法得到S波到时的中强以上直至巨大地震的速报、地震现场流动台网的快速定位以及地震的快速预警等.   相似文献   

9.
Improving Regional Seismic Event Location in China   总被引:1,自引:0,他引:1  
—?In an effort to improve our ability to locate seismic events in China using only regional data, we have developed empirical propagation path corrections and applied such corrections using traditional location routines. Thus far, we have concentrated on corrections to observed P arrival times for crustal events using travel-time observations available from the USGS Earthquake Data Reports, the International Seismic Centre Bulletin, the preliminary International Data Center Reviewed Event Bulletin, and our own travel-time picks from regional data. Location ground truth for events used in this study ranges from 25?km for well-located teleseimic events, down to 2?km for nuclear explosions located using satellite imagery. We also use eight events for which depth is constrained using several waveform methods. We relocate events using the EvLoc algorithm from a region encompassing much of China (latitude 20°–55°N; longitude 65°–115°E). We observe that travel-time residuals exhibit a distance-dependent bias using IASPEI91 as our base model. To remedy this bias, we have developed a new 1-D model for China, which removes a significant portion of the distance bias. For individual stations having sufficient P-wave residual data, we produce a map of the regional travel-time residuals from all well-located teleseismic events. Residuals are used only if they are smaller than 10?s in absolute value and if the seismic event is located with accuracy better than 25?km. From the residual data, correction surfaces are constructed using modified Bayesian kriging. Modified Bayesian kriging offers us the advantage of providing well-behaved interpolants and their errors, but requires that we have adequate error estimates associated with the travel-time residuals from which they are constructed. For our P-wave residual error estimate, we use the sum of measurement and modeling errors, where measurement error is based on signal-to-noise ratios when available, and on the published catalog estimate otherwise. Our modeling error originates from the variance of travel-time residuals for our 1-D China model. We calculate propagation path correction surfaces for 74 stations in and around China, including six stations from the International Monitoring System. The statistical significance of each correction surface is evaluated using a cross-validation technique. We show relocation results for nuclear tests from the Balapan and Lop Nor test sites, and for earthquakes located using interferometric synthetic aperture radar. These examples show that the use of propagation path correction surfaces in regional relocations eliminates distance bias in the residual curves and significantly improves the accuracy and precision of seismic event locations.  相似文献   

10.
The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.  相似文献   

11.
Measurements of the amplitudes of seismic body waves at teleseismic distances have rarely resolved significant features mainly because of the large scatter of the data. However, amplitudes are easy to measure and may provide additional constraints on structure to supplement times and waveforms. A new approach to analysing body wave amplitudes at a regional network of similar instruments seeks to minimize scatter by first deriving amplitude station corrections analogous to station corrections for times. After correction for station effects, amplitudes from several events can be combined to give regional amplitude–distance curves without using information on event magnitudes. However, the earthquakes providing the observations must lie in a restricted range of azimuths from the stations of the network and provide considerable overlap in the range of distances between adjacent events, with no gaps in distance coverage. The advantages of the method are explored using P wave amplitudes from two sets of earthquakes in the Indonesian and South American regions recorded by the Kaapvaal network deployed across southern Africa. In the first example, high amplitudes near 88° distance suggest the presence of a small discontinuity at the top of D″ that causes constructive interference between the closely separated arrivals of a small triplication in the travel times. The second example, supplemented by calculations using synthetic data, shows how long-wavelength regional variations in amplitudes can be resolved to assist the interpretation of times and waveforms. However, the limited range of distances in the observations and lateral heterogeneities at any depths can result in bias or tilt of the amplitude–distance relationships. Constraining the depths of the structure causing the long-wavelength variations is a subject for future research.  相似文献   

12.
构建区域介质三维速度模型并以之获得准确的区域震相走时, 是提高区域地震定位精度的重要手段之一. 为充分利用已有的一维模型、 GT事件、 地质资料等实现三维模型构建, 尝试基于目标区域内已有的部分局部一维模型, 通过克里金空间插值建立初始三维模型, 然后利用GT事件走时数据并参考其它地震地质资料对其不断进行修正, 使得其走时偏差图与GT事件走时偏差图一致, 进而获得能够提高区域地震定位精度的三维模型. 使用不同模型进行的地震定位实验表明, 以此方法建立的三维模型的定位偏差较初始模型减少约20%, 较好地起到了减小区域震相走时残差, 提高区域地震定位精度的作用.   相似文献   

13.
—?Seismic event locations based on regional 1-D velocity-depth sections can have bias errors caused by travel-time variations within different tectonic provinces and due to ray-paths crossing boundaries between tectonic provinces with different crustal and upper mantle velocity structures. Seismic event locations based on 3-D velocity models have the potential to overcome these limitations. This paper summarizes preliminary results for calibration of IMS for North America using 3-D velocity model. A 3-D modeling software was used to compute Source-Station Specific Corrections (SSSCs(3-D)) for Pn travel times utilizing 3-D crustal and upper mantle velocity model for the region. This research was performed within the framework of the United States/Russian Federation Joint Program of Seismic Calibration of the International Monitoring System (IMS) in Northern Eurasia and North America.¶An initial 3-D velocity model for North America was derived by combining and interpolating 1-D velocity-depth sections for different tectonic units. In areas where no information on 1-D velocity-depth sections was available, tectonic regionalization was used to extrapolate or interpolate. A Moho depth map was integrated. This approach combines the information obtained from refraction profiles with information derived from local and regional network data. The initial 3-D velocity model was tested against maps of Pn travel-time residuals for eight calibration explosions; corrections to the 3-D model were made to fit the observed residuals. Our goal was to find a 3-D crustal and upper mantle velocity model capable predicting Pn travel times with an accuracy of 1.0–1.5 seconds (r.m.s.).¶The 3-D velocity model for North America that gave the best fit to the observed travel times, was used to produce maps of SSSCs(3-D) for seismic stations. The computed SSSCs(3-D) vary approximately from +5 seconds to ?5 seconds for the western USA and the Pre-Cambrian platform, respectively. These SSSCs(3-D) along with estimated modeling and measurement errors were used to relocate, using regional data, an independent set of large chemical explosions (with known locations and origin times) detonated within various tectonic provinces of North America. Utilization of the 3-D velocity model through application of the computed SSSCs(3-D) resulted in a substantial improvement in seismic event location accuracy and in a significant decrease of error ellipse area for all events analyzed in comparison both with locations based on the IASPEI91 travel times and locations based on 1-D regional velocity models.  相似文献   

14.
天津市地震局滨海地震台测震、地球物理等观测手段众多,数据处理量大,处理软件繁多。为此,利用PHP开发网页化的综合管理系统,将工作内容进行分类整理,将台站工作展示、地震观测工作辅助、工作提示等功能整合在系统中,从而减少数据处理错误,提高数据观测质量及工作效率。该平台具有扩展性,可随时添加新的功能模块,适应未来工作变化。  相似文献   

15.
Based on the first P wave arrival time data of local earthquakes recorded in the Kunming Telemetry Seismic Network in 1982–1989, the P travel time corrections of the stations in the network were obtained by use of the parameter separation method and the multiple event location method. This set of the corrections reflects the feature of lateral inhomogeneous structure of the upper crust beneath the network to certain degree. The geographic distribution of the sation corrections has obviously regional characteristics, by which the studied area is divided into three sub-areas. In the Western Yunnan area where the stations are the most dense, except the stations of Yunxian, Shidian and Wanding in south, the station corrections are not greater than 0.15 sec. In the eastern area (to the east of Chuxiong) where the network has slightly wider station interval, most of them show obviously positive delay. In southern area, including stations of Wenshan, Simao, Jinghong, Yunxian, Shidian and Wanding, all the stations have large negative delay. The results consist with the basic feature of geologic setting in Yunnan area. The accuracy of the relocated hypocentral parameters based on the corrected travel time data has fairly improved. Therefore the station corrections can be used to the routine processing of earthquake location in the Kunming Seismic Network. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 136–145, 1993.  相似文献   

16.
The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f?k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f?k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.  相似文献   

17.
The study of the stress-strain state of a medium in seismically quiet areas is difficult because of the absence of strong events. Under such circumstances, each earthquake, even relatively weak, is of high importance. In this case, all possible information on tectonic stresses and their dynamics, e.g., information on time, location, and magnitude of aftershocks, should be obtained from available seismic data. The earthquake near the town of Mariupol which occurred on August 7, 2016, had a body wave magnitude of 4.5–4.9 from the data of the different seismological centers. We detected 12 aftershocks that occurred within 5 days after the main shock using two seismic arrays (AKASG and BRTR) and one three-component station (KBZ) of the International Monitoring System, as well as two array stations of the Institute of Geosphere Dynamics, Russian Academy of Sciences. For six aftershocks, signals were found at three or more stations. The other aftershocks were detected from the data at two out of three nearest stations. Signal detection and association with aftershocks of the main shock, as well as estimation of magnitude and relative location of the found aftershocks, were carried out using the method of waveform cross-correlation (WFCC). The signals from the main shock that acted as the only master event (ME) for the WFCC method were used as waveform templates. To increase the signal-to-noise ratio and to determine the exact onset time of regular seismic waves from aftershocks, we used waveform templates of different length, from 10 to 180 s depending on the wave type and distance to the station, as well as band filtering in narrow frequency bands. The highest sensitivity of the detector and accuracy of the P-wave onset time estimates were reached when a waveform template included all regular waves from P to L g . Association of signals with aftershocks was based on back projection of signal arrival times to origin times using the travel time from a master event to the station, which was measured with a very low error, being equal to almost half of the digitization step length. To develop a seismic event hypothesis, the origin times at two or more stations should be spaced within a 2-s interval.  相似文献   

18.
本文首先清理了近年来我国一些中强地震前后波速比异常概况。在21个震例中,有7次震前提出过不同程度的预报意见,12次是震后总结发现异常的,2次震后总结未发现异常。其次,讨论了利用天然地震资料探索地震波速度异常的几个问题:(1)现有较密的区域电信传输台网需提高观测精度,使得较大的前兆异常量不致于被误差所掩盖;(2)使用多台和达法探索波速比异常时必须注意其方向性效应,而且,若能把单台波速比法与多台波速比法平行对照使用,效果可能更好些;(3)要注意远台与近台出现异常的早晚与反应的程度;(4)高值点反映地震前兆的信息较小,而低值却可能携带某些前兆信息;(5)不会有固定不变的异常区,应该考虑到异常区的变迁。  相似文献   

19.
天山东北部地震的重新定位和一维地壳速度模型的改善   总被引:6,自引:4,他引:2  
根据布设在乌鲁木齐市活断层探测区内的流动宽频带地震台阵,结合区域地震台网的走时数据,利用3种不同的定位方法对新疆天山东北部地区(E85°30′~ 88°30′,N43°00′~44°40′) 2004年8月至2005年8月发生的599个地震进行了重新定位.通过比较不同方法的结果合理性,确定了适合于当地震源精定位的程序,并改善了一维地壳速度模型.结果表明:联合使用流动地震台阵和区域台网的资料,显著提高了研究区的地震定位能力,精定位后震中分布图像更加集中,展示出了天山东北部地区更为明显的与活动构造相关的条带状地震活动分布图像,除了一些与已知断层相关的地震事件外,还发现一些有待证实的活断层.  相似文献   

20.
天山东北部地震的重新定位和一维地壳速度模型的改善   总被引:1,自引:1,他引:0  
We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30’ ~ 88°30’E,43°00’ ~ 44°40’ N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号