首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
针对倾斜摄影应用在大比例尺地形图、地籍测量中存在的粗差多、误差分布不均匀等问题,本文以生成高精度的二维矢量作为切入点,对倾斜摄影的相关原理深入研究,并以此作为理论基础设计不同的像控布设方案,在测区范围内进行一系列的实验,对空三加密、矢量测图精度及误差进行对比分析,探索研究出满足大比例尺测图精度要求的技术路线。  相似文献   

2.
王涛  张艳  张永生  莫德林  周丽雅 《测绘学报》2018,47(11):1474-1486
针对国内首台自主研制的机载三线阵CCD相机(以下简称GFXJ),开展了国产GFXJ的GNSS偏心矢量和IMU视轴偏心角标定技术研究工作。首先介绍了GFXJ相机的成像特点,然后分析建立了GFXJ的GNSS偏心矢量标定模型和IMU视轴偏心角标定模型,并提出了GNSS偏心矢量和视轴偏心角循环两步法标定方案,最后在国家嵩山遥感综合实验场获得了多次飞行试验数据。通过进行区域网平差和标定处理,验证了本文建立的GNSS偏心矢量标定模型和IMU视轴偏心角标定模型的正确性和有效性,证实了本文提出的循环两步法标定方案可靠、可行,可显著提升GFXJ的几何定位精度。利用GNSS偏心矢量和IMU视轴偏心角标定值,大幅提高了GFXJ相机的无控定位精度。辅以少量控制点进行区域网平差,GFXJ影像平面定位精度可满足1:1000地形图测图的空中三角测量精度要求,高程精度距离指标要求略有差距。目前该款相机仍在校飞阶段,定型后几何性能有望进一步提高。同时,本文建立的GNSS偏心矢量标定模型和IMU视轴偏心角标定模型及提出的循环两步法标定方案,可为其他机载线阵CCD相机的标定处理提供借鉴。  相似文献   

3.
为了分析全站仪小角法水平位移监测精度,本文基于误差传播定律和基坑位移监测数据对其进行了精度分析。通过理论推演,发现在保守精度估算条件下,小角法具有较高的水平位移测量精度。同时根据理论分析,发现小角法测量最大影响因素是对中和照准偏心误差,严格控制该误差,可有效提高小角法测量精度。监测实验表明,全站仪小角法施测精度易于控制,且对施测仪器精度要求不高,可满足三等位移监测施测要求,是一种简单、快速、高效的水平位移监测方法。  相似文献   

4.
4.建筑方格纲测角和量巨误差建筑方格纲测角,根据精度估算,是按测角图形闭合差计算的中误差值,其中除包含测量本身读数和视准误差外,尚存在着观测时目标偏心误差,仪器对中误差等的影响。故测站测量本身决定的中误差,实际应允许为图形闭合差计算中误差值中的一半。  相似文献   

5.
矿井贯通测量是矿山测量中的一项重要工作,为确定井下巷道的掘进方向提供重要依据和保障,必须要保证在贯通点有足够的精度。目前,矿井贯通测量大多采用支导线形式,尤其在较长巷道贯通时很难保证其精度,因此,必要时需在导线上加测一定数量的陀螺定向坚强边,将支导线分为若干条方向附合导线,检查井下导线测角的正确性,同时提高井下导线测量的精度。而误差预计是在根据设计的容许要求制定施测方案时,根据施测方案确定的施测方法、使用仪器自身精度在施测前预计方案在施测过程中实际偏差可能达到的程度,将估算的预计误差与设计的容许误差进行比较,选择符合设计要求的、合理的测量方案和方法,指导测量施工。本文以实例就井下导线测量加测陀螺定向坚强边后的误差预计的计算方法作以探讨。  相似文献   

6.
在DEM支持下,通过引入投影视差光线,以数字正射影像为基础,制作立体辅助影像,并与原正射影像共同构建正射立体影像对,产生与实地相似的几何模型,进行立体观察与量测,可以量测地貌高程,是另外一种构建立体三维环境的思路.然而生成正射影像和辅助影像的原始DEM是含量有误差的.这种误差是否会对产生的立体正射影像对的高程量测结果产生粗差,进而是否影响立体正射影像对的后续使用,这是分析探讨的出发点.理论和实践证明,使用该DEM生成正射立体影像对的左右视差并不受DEM误差的影响,量测高程能够达到一定的精度要求.  相似文献   

7.
基于基坑观测工程,利用全站仪小角法对基坑周边8个监测点进行水平位移监测,分析其在基坑内外两侧的位移状况。根据小角法原理与误差传播定律,对小角法施测精度进行精度分析。实验结果表明,在顾及最不利因素的条件下,小角法仍具有较高施测精度,可满足工程需要,是一种精度高、速度快的水平位移监测方法。同时,发现对中误差和目标偏心误差是水平位移误差的主要影响因素,必须将二者控制在较小范围内,才能保证小角法水平位移监测精度。本研究对于有效实施小角法基坑监测,分析基坑监测误差来源具有一定理论意义。  相似文献   

8.
程鑫  王坚  韩厚增  刘飞  郭楠 《测绘科学》2021,46(9):1-6,33
针对超宽带测距误差大影响定位精度以及传统精度评定方案不能准确反映定位区域误差问题,该文基于RBF神经网络的UWB测距模型提高测距精度,针对室内狭长楼道环境特点,分析UWB基站组网优化方案下的四基站布设与五基站布设精度.分析表明,在相同定位区域,五基站布设方法有效抑制了四基站布设时中间区域最大PDOP值.在测距误差经过改正后,UWB基站组网优化方案更准确反映测区精度.相同精度要求下,采用基站优化布设方案基站覆盖范围更广,可用于应急场景快速定位.基于不等精度加权DOP值的UWB基站组网优化方案,在考虑测距误差后能够准确反映UWB基站布设区域定位精度.  相似文献   

9.
以无人机航摄技术在大比例尺(1∶1 000、1∶500)地形图测绘中的应用为研究目的,采用固定翼无人机平台,搭载非量测型数码相机,于河北某矿区进行航摄大比例尺地形图制作实验,通过外业实测点位数据对测图高程及平面精度进行评估。实验结果表明:通过严控误差影响因素无人机航摄技术可以满足1∶1 000比例尺测图精度要求,1∶500比例尺测图精度无法满足。最后,基于精度评定数据对误差产生的原因进行了深入分析与探讨,为无人机航摄技术测绘大比例尺地形图应用的可行性及可靠性提供了经验。  相似文献   

10.
针对海洋大地基准点位置标定的各项误差影响因素难以直接线性化为数学模型的问题,该文基于我国首个深海海底大地基准点的标校试验数据(水深3 000 m),利用公式推导结合数值方法定量分析了主要误差因素对海底定位精度的影响。声速误差对海底定位精度的影响很大,其中影响约为0.3 m的声速短周期时变误差难以消除;航迹几何结构对称性会对定位结果精度造成分米级影响;测船位置的系统偏差对海底定位结果具有等量级的影响(小于0.2 m);测船姿态的系统偏差在5°以内时影响小于0.4 m;观测值时标误差在0.5 s以内时影响为厘米级;时延测量值系统偏差小于0.1 ms时仅在垂向造成0.11 m的影响。为实现准确度优于2 m的海底绝对定位目标,测船航迹结构应保持对称,声速剖面精度应优于0.1 m/s,测船位置精度应优于0.1 m,时延观测值精度应优于0.1 ms,并对姿态测量安装角、杆臂矢量偏心值和观测数据时标偏差进行严格标定。  相似文献   

11.
辛星  谷金 《测绘工程》2018,(1):73-76
在GPS-RTK测量界址点时,通过点校正获取坐标转换参数会引起系统性的坐标转换残差;在测定建筑物墙角等界址点时,只能以接收机天线的外缘靠近墙角位置,使得天线中心偏离界址点的实际位置,导致界址点测量偏心差。为此,通过在测区所有已知点上检测其坐标以建立测区的坐标转换残差改正模型,并导出三种基于天线偏心改正的界址点坐标计算及其误差公式,基本消除RTK界址点测量中的系统性误差影响。实际应用表明,该方法原理简单且便于外业施测和编程实现,可提高GPS-RTK界址点测量的精度。  相似文献   

12.
The use of circular object targets is very common in spatial photogrammetric object reconstruction. An object circle is projected on to the image plane as an ellipse if the object plane and the image plane are not parallel to each other. The image co-ordinates of the centre of the ellipse are usually determined automatically by means of digital image processing. These co-ordinates are then used as observations for a subsequent reconstruction of the three dimensional object point. The image co-ordinates of the centre of the ellipse and the true co-ordinates of the projected centre of the circular object target are not identical; thus eccentricity is caused, resulting in systematic geometric image measurement errors. This paper describes the functional context of this eccentricity for a typical target/camera set-up. The possible solutions for a correction of this systematic eccentricity error are derived. Guidelines for the correct combination of object target sizes and exposure distances, guaranteeing reliable image point measurements and accurate object point determination, are proposed.  相似文献   

13.
为了提高对仪器的测定精度及准确度,提高检定效率、同时减小检定的人为误差、降低检定成本,项目研发了光电测距仪周期误差固定式自动检定系统。该系统实现了对目前国内外光电测距仪周期误差自动化检定,经对系统测定其基准准确度、平台平直度,证实能够满足JJG703-2003检定规程要求。该光电测距仪周期误差自动化检定系统低成本、高效率、自动化程度高,可方便准确地检定光电测距仪的周期误差。  相似文献   

14.
随着对地观察测绘卫星、深空探测卫星对姿态测量精度要求的提高,进一步提高星图匹配精度是当前面临的重要课题之一。星点提取和定位是星图识别的前提。本文简单探讨了新型Top-hat变换的星点提取方法,通过实验对比分析了三角形星图匹配算法和采用P向量的星图匹配算法优缺点。   相似文献   

15.
为了解ITRF2008框架下VLBI和GPS两种空间技术确定地心坐标的真正实现精度,在并置站上对VLBI和GPS两种空间技术测定的地心坐标进行了比较,经过偏心改正和七参数转换之后,得到两种空间技术地心坐标不符值的加权中误差,其可以认为是这两种空间技术的真正实现精度,经比较分析这两种地心坐标三个坐标轴方向分量的外符精度都在10mm之内,说明VLBI和GPS确定的地心坐标精度已达到毫米级。  相似文献   

16.
New results in airborne vector gravimetry using strapdown INS/DGPS   总被引:2,自引:0,他引:2  
A method for airborne vector gravimetry has been developed. The method is based on developing the error dynamics equations of the INS in the inertial frame where the INS system errors are estimated in a wave estimator using inertial GPS position as update. Then using the error-corrected INS acceleration and the GPS acceleration in the inertial frame, the gravity disturbance vector is extracted. In the paper, the focus is on the improvement of accuracy for the horizontal components of the airborne gravity vector. This is achieved by using a decoupled model in the wave estimator and decorrelating the gravity disturbance from the INS system errors through the estimation process. The results of this method on the real strapdown INS/DGPS data are promising. The internal accuracy of the horizontal components of the estimated gravity disturbance for repeated airborne lines is comparable with the accuracy of the down component and is about 4–8 mGal. Better accuracy (2–4 mGal) is achieved after applying a wave-number correlation filter (WCF) to the parallel lines of the estimated airborne gravity disturbances.  相似文献   

17.
The Altimetric Bathymetry from Surface Slopes (ABYSS), which is the proposed science payload on the International Space Station (ISS), is a Johns Hopkins University Applied Physics Laboratory-developed flight-proved delay-Doppler phase-monopulse radar altimeter capable of measuring ocean surface slope in the 6–200-km half-wavelength frequency band range with an accuracy of 0.5 $muhbox{rad}$ , with autonomous gimbal control to compensate for the ISS structural motions. This measurement allows an improved mapping of the global bathymetry, enabling a wide range of scientific research works and applications. The nonrepeat ISS orbital ground track is ideal for ABYSS. This letter describes a simulation study on the effects of the Earth's gravity field and other errors, including thermal bending of the ISS, on the orbit determination of the altimeter instrument antenna phase center location, fulfilling the science objectives of ABYSS. Our study concluded that the error due to mean gravity field is no longer limiting due primarily to the recent Gravity Recovery and Climate Experiment gravity modeling and that the ABYSS/ISS radial orbit slope error budget in the presence of various force and measurement model errors is estimated at the 0.2-$mu hbox{rad}$ root-sum-squared (RSS) level, which satisfies the ABYSS orbit accuracy science requirement to provide an improved mapping of global bathymetry.   相似文献   

18.
Kalman滤波异常误差检测   总被引:5,自引:0,他引:5  
为检测动态导航观测异常和动态模型异常误差,本文利用状态方程预测残差二次型构造了整体误差检验法,即观测误差和动力学模型误差整体检验法;讨论了三种观测异常检测法,即以模型为基准的观测异常检验,以当前历元可靠观测为基准的异常检验,以状态Kalman滤波估值为基础的观测异常检验;分析了三种动力模型异常检测法,即状态不符值检验法,以状态参数Kalman滤波估值为基础的动力模型误差检验法,以可靠观测为基础的动力模型误差整体检验法。并对这几种异常检测法进行了简单分析。  相似文献   

19.
InSAR数据处理中的误差分析   总被引:17,自引:1,他引:17  
针对星载雷达 ,从InSAR的基本原理出发 ,综合推导并讨论了相位观测误差、卫星轨道误差、地形误差等各类误差源对不同工作模式 (包括重复飞行InSAR生成DEM ,Two passDInSAR监测地表形变 ,以及Three passDInSAR监测地表形变 )的影响  相似文献   

20.
星敏感器的姿态测量精度是评价星敏感器性能以及卫星姿态确定的最重要指标之一。本文提出一种星敏感器的测量误差分析方法, 适用于卫星在轨运行期间以及整星地面测试阶段星敏感器测量误差的确定, 特别是在目标姿态无法准确预知情况下的误差确定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号