首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on Chandrasekhar's and Lebovitz's treatment of the roto-vibrational modes of a homogeneous compressible neutron star, we calculate damping rates per unit eccentricity of toroidal mode and pulsational mode by gravitational radiation. It is found that the damping rate of the pulsational mode which becomes the quadrupole mode (emits gravitational wave) has a minimum at the eccentricity e = 0.72 for = 4/3, and 8/5 whereas both the pulsational mode with = 5/3 and the toroidal mode have no minima, i.e., the pseudo-radial mode can last many years longer than the toroidal mode. We suggest to measure the damping rate of pulsational mode only for the detection of a strong gravity wave source.Submitted for presentation in the 6th Asian Pacific Regional Meeting on Astronomy, I.A.U., to be held on 16–20 August 1993 at IUCAA, Pune, India.  相似文献   

2.
A study of pulsational properties with evolution has been done for a 15.6M star withX e =0.90 andY e =0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5,9 and 15M withX e =0.708,Y e =0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters,n ands. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram.  相似文献   

3.
We have observed the first overtone rotation-vibration absorption bands of SiO near = 4µm for a sample of 23 oxygen-rich Mira and Semiregular variables using the ESO NTT and IRSPEC. We discuss the strength of the SiO absorption in terms of the near infrared, IRAS and pulsational properties of the stars. Especially among the Miras there are big differences in the strength of the SiO bands between individual objects, which are probably due to pulsational variability.This work is supported by the Austrian Science Fund Project P9638-AST.  相似文献   

4.
On the basis of hydrodynamical simulations the semi-regular and alternating pulsations of the W Vir and RV Tau stars are studied including non-steady radiative transfer effects in gray sphericalsymmetric atmospheres. It is shown that the transition from regular to semi-regular oscillations occurs at periodsP13–15 days due to pulsation energy imbalance provoqued by strong radiating shocks. The differences between the periods and amplitudes of W Vir and RV Tau variables are explained as a result of this imbalance. It is suggested that the semi-regular alternating pulsations of the RV Tau stars appear following a period-doubling phenomenon, which can be also understood in terms of the pulsation energy variations between odd and even fundamental cycles. The pulsational characteristics of the period-doubled models are in general accordance with those observed in the RV Tau stars. On the basis of numberical results, a theoretical estimation of the upper limit for the luminosity of the RV Tau stars is derived asL103 L .  相似文献   

5.
If the assumption of a catastrophic explosion during the formation of a neutron star is correct, the parent systems for klovsky's model of SCO XR-1 seem to have been very short-period white-dwarf binaries. A white dwarf originally in contact with its Roche limit is forced to lose mass. During the ejection of matter the primary may pass the white-dwarf mass limit and become a neutron star. The mass transfer time-scale can change from pulsational to thermal, and a mass flow of 10–9 M per year needed for SCO XR-1 can be understood, while at the same time the orbital period will increase.  相似文献   

6.
The solution of equation of state corresponding to equality =3 gives non-terminating solutions for isothermal neutron star cores. Hence, for this equality, core-envelope models have been developed by taking another equation of state, corresponding to the condition 3, in the envelope. Various static, pulsational, and rotational parameters pertaining to neutron star models are calculated. These models are gravitationally bound and stable for radial perturbations and slow rotations.  相似文献   

7.
Hydrodynamic simulations of nonlinear pulsation for less-massive cool supergiants have been performed by several authors. Outburst of large amplitude oscillations at times is one of common features of these models. To find out routes of the transition from the limit cycles to the irregular pulsations. We performed hydrodynamic simulation for a series of models of luminosity log(L/L )=3.505, andT e =5300 K with the range of the mass 1.4M M1.5M . With decreasing the mass, we confirm a transition from limit cycles to irregular oscillations.The nature of the transition is finally specified by examining the dissipation of pulsational kinetic energies in limit cycle models, when pulsations start with larger amplitudes than their limiting pulsations. We find that the rates of dissipation are so small that they might be marginally stable. Furthermore, the oscillation starting with even larger amplitudes gets the kinetic energies until it reaches a limit where the oscillation induces strong shock waves and dissipates its kinetic energy. Thus, we conclude that the model which has the stable limit cycle near the transition has another unstable fixed point above the limit cycle. The transition, therefore, is induced by disappearance of these two fixed points, as the mass, the control parameter in our case, is varied, and is found exactly in aggreement with the intermittency proposed by Pomeau and Manneville as a route to chaos in dissipative systems.  相似文献   

8.
The problem of stability of an unbounded anisotropic plasma characterized by different temperatures along and transverse to the magnetic field is investigated for an arbitrary direction of propagation. Chewet al (1956) equations modified to incorporate self-gravitation, finite ion Larmor radius (FLR) and Hall current are used. Uniform rotation (of an order of interest in astrophysics) is also considered. Extensive numerical treatment of the dispersion relation leads to several interesting results.Inclusion of FLR, or Hall current or both together introduces pulsational instability for prepagation parallel to the magnetic field. The aperiodic growth rate of the mirror instability is only slightly altered due to FLR or Hall current effects. In the absence of rotation, self-gravitation, FLR and Hall current, the growth rate decreases for the mirror region as the direction of propagation approaches the field direction, while the fire hose instability persists for arbitrary propagation, even in the limiting case (the mirror limit) where the propagation is nearly transverse to the magnetic field. Uniform rotation altogether stabilizes the fire hose instability for a sufficiently strong pressure (or temperature) anisotropy. Pulsational instability is introduced when both ratation and self-gravitation effects are present. Either FLR or Hall current depresses the growth rate of the fire hose instability and introduces pulsational instability for the general case of arbitrary propagation. When FLR and Hall current effects are present simultaneously, the interaction terms due to these effects may be strongly destabilizing in nature for arbitrary propagation.  相似文献   

9.
In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time scales of several years with two immediate observational goals:
  1. determine $\dot{P}$ of the pulsational periods P
  2. search for signatures of substellar companions in O–C residuals due to periodic light travel time variations, which would be tracking the central star’s companion-induced wobble around the centre of mass
These sets of data should therefore, at the same time, on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the $\dot{P}$ (comparison with “local” evolutionary models), and on the other hand allow one to investigate the preceding evolution of a target in terms of possible “binary” evolution by extending the otherwise unsuccessful search for companions to potentially very low masses. While timing pulsations may be an observationally expensive method to search for companions, it samples a different range of orbital parameters, inaccessible through orbital photometric effects or the radial velocity method: the latter favours massive close-in companions, whereas the timing method becomes increasingly more sensitive toward wider separations. In this paper we report on the status of the on-going observations and coherence analysis for two of the currently five targets, revealing very well-behaved pulsational characteristics in HS?0444+0458, while showing HS?0702+6043 to be more complex than previously thought.  相似文献   

10.
All the observational data of 12DD Lacertae obtained have been examined to find a clue to the problem of secular variation or pulsational stability. From the statistical consideration it is concluded that the mean brightness is almost constant within small irregular variation of a few hundredth of a magnitude and the -velocity also shows small irregular variation of a few km sec–1 during more than a half century; but a result from the least-squares solution is also discussed. No periodicity of the variation in mean magnitude and -velocity has been detected, and an expectation that the small variation in the -velocity might be caused by orbital motion is not confirmed.  相似文献   

11.
Slitless spectroscopy is used to discover 22 emission stars in the central and northwest regions of the cluster located in the NGC 7129 nebula. 16 of them are found for the first time. This sample is essentially complete up to V 20.0. The emission stars are distributed nonuniformly over the field of the cluster and are concentrated toward its center. Photometry in the V, R, and I bands is conducted on more than a hundred stars in the cluster. This yields an average absorption coefficient A V=1.7±0.27 for this region. Based on their positions in color diagrams for the optical and near IR ranges, most of the emission stars can be regarded as T Tau objects.  相似文献   

12.
The Mees CCD (MCCD) instrument is an imaging spectroscopy device which uses the 25 cm coronagraph telescope and the 3.0 m Coudé spectrograph at Mees Solar Observatory (MSO) on Haleakala, Maui. The instrument works with resolving power up to R 200 000 with significant throughput from 3934 Å (Caii K) to 10 000 Å. A fast guiding active mirror stabilizes the image during observations. A rapidly writing magnetic tape storage system allows observations to be recorded at 256 kbytes s–1. Currently, the MCCD is used for imaging spectroscopy of solar flares at 6563 Å (H), and velocity measurements of umbral oscillations; future plans include emission line studies of active region coronae, and photospheric studies of solar oscillations.  相似文献   

13.
This project is part of a world wide cooperation aimed at investigating properties of white dwarf stars to determine their constitution and evolution. The project is based on two recent developments:-The first is the discovery, of pulsational instabilities in some white dwarf stars, giving rise to non-radial pulsations which can be observed as flux modulations with low amplitude.-The second is to study the mass transfer between interacting binary white dwarf stars, which transports processed material from the interior of the donating star to the accretor. We present a study of four interacting binary white dwarf systems based on IUE spectra.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife Canary Islands, Spain.  相似文献   

14.
Observations related to the photospheric velocity field of Cephei can be interpreted as follows: during the whole cycle of pulsations the only motion form in the atmosphere is a wave motion with a nearly constant full amplitude of approximately 15 km s–1, and a wavelength of about 106 km (which are quantities, about equal to the amplitudes of pulsational velocity and radius of the star). There are no significant small-scale turbulent velocity components. The microturbulent and macroturbulent velocities, as derived from spectral line observations, are fully compatible with this picture.  相似文献   

15.
The present observational status of the Sct stars, Dor stars and roAp stars is discussed. The Sct stars are the most intensively observed of the three groups, but it has become clear that there are severe problems in extracting asteroseismic information from them. Dozens of frequencies are observed, but hundreds of frequencies are predicted from the models; unique matches of observation and theory still elude us. The Sct stars are observationally complex – some recent `best case' campaigns are discussed. It is possible that substantial observational advances for Sct stars may need to await upcoming satellite missions. New Dor stars are beingdiscovered frequently, and new behaviour is being found for them. They constitutean observationally young field. Their pulsational frequency range is being expanded, their position in the HR diagram is becoming better known (but is yet to be fully constrained), and the possibility exists of hybrid Dor – Sct stars that have greatasteroseismic promise, although it is clear such stars are rare, if they do exist. It has been observationally challenging to extract more than a fewfrequencies for any Dor star so far. Exciting spectroscopic discoveries of new behaviour in roAp stars promise unprecedented information about the structure of the peculiar atmospheres ofthose stars – pulsation amplitude and phase in 3D, magnetic field structurein 3D, abundance stratification in 3D, realistic T- for the most peculiarstars – as well as entirely new information about the interaction of pulsation,rotation and magnetic fields. Recent theoretical work has led to new understandingof the previously inexplicable frequency spacing of HR 1217 with new Whole Earth Telescope observations supporting this theory. An `improved oblique pulsator model' has been developed in which the pulsationaxis is not the magnetic axis; this model has passed several observationaltests and new ones are being devised to examine it further.  相似文献   

16.
The radiative damping of trapped gravity waves in an optically thin atmosphere is studied for a stratified Boussinesq fluid. The character of the atmospheric eigenmodes depends on the distribution of the Brunt-Väisälä frequency N and the radiative relaxation time . The calculations for simple layer models show that if N is large over some finite fraction of the trapping region, then modes of long lifetime can exist. In order to suppress gravity waves entirely, it is necessary that N < 1 over the entire trapping region. Qualitative application of the results to the solar atmosphere leads to the conclusion that gravity wave eigenmodes of the solar atmosphere, although damped, are by no means eliminated by radiative effects.  相似文献   

17.
We present new BV photometry and spectroscopic observations of RZ Cassiopeiae. The light and radial velocity curves were formed by the new observations which have been analyzed simultaneously by using theWilson‐Dewinney code. The non‐synchronous rotational velocity v 1 sin i = 76 ± 6 km s–1, deduced for the primary component from the new spectroscopic observations, was also incorporated in the analysis. A time‐series analysis of the residual light curves revealed the multi‐periodic pulsations of the primary component of RZ Cas. The main peak in the frequency spectrum was observed at about 64.197 c d–1 in both B and V bands. The pulsational constant was calculated to be 0.0116 days. This value corresponds to high overtones (n ∼ 6) of non‐radial mode oscillations.We find significant changes in the pulsational amplitude of the primary component from year to year. The peak‐to‐peak pulsational amplitude of the main frequency displays a decrease from 0.m013 in 2000 to 0.m002 in 2001 and thereafter we have found an increase again in the amplitude to 0.m01 in the year 2002. We propose the mass transfer from the cool secondary to the pulsating primary as a possible explanation for such remarkable changes in the pulsational behavior of the primary component. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Simultaneous high-resolution spectroscopy in H andUBVRI polarimetric observations are proposed as an effective method for the search for circumstellar inhomogeneities in A0-type Herbig stars. The new results for AB Aur are presented as a successful example of the use of this method. The analysis of about 100 CCD H profiles (R = 30 000) and more than 150 polarimetric measurements obtained in January, 1994 allowed to discover a long-lived stream-like inhomogeneity in the circumstellar gaseous envelope.  相似文献   

19.
The present paper offers an alternative point of view of block regularization for the motion of a particle in a central potential field of the form –x , where x is the distance between the particle and the source and some positive real number.Working in the physical space, we consider the scattering angle determined by the path of the particle as a function of angular momentum. We prove that a particle flow is passing over the collision singularity preserving differentiability with respect to initial data if and only if = 2(1–1/n), n positive integer, n 2.This result coincides with the outcome of block regularization applied by McGehee to the same dynamical problem. We discuss that this identity was to expect since both methods target the same physical constraint over the flow.  相似文献   

20.
In this paper we give an explanation for a control mechanism for velocityV of solar wind (SW) streams for coronal holes (CHs) based on the idea suggested by Rudenko and Fainshtein (1993). In accordance with that idea, the difference of values ofV in high-speed SW streams from different CHs is due to the spread in magnitude of magnetic fieldB a in the region of acceleration of such streams near the Sun. In this case, with increasing magnitude ofB a, there is an increase in velocity of the high-speed stream.Through calculations of the coronal magnetic field (potential-field approximation) it is shown that on the source surface the magnetic field B s, averaged over the cross-section of the magnetic tube from a CH, can vary for different tubes over a wide range and correlates quite well with the area of this tube's base as well as depending on the radial component of the magnetic field at the base of the tube on the source surface B or.It is found that the value of superradial divergence of the magnetic tube from a CH depends not only on the area of its base (as shown in prior work) but also on B or. A positive correlation at the Earth's orbit between velocityV of the high-speed SW and the radial component of the magnetic field in the region of this stream is detected, which agrees indirectly with theV-control mechanism under discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号