首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions, and sometimes more than one component contributes to the observed line profile. In this study, we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, 12CO   J = 2 → 1, 13CO J = 2 → 1  , C18O   J = 2 → 1  and C17O   J = 2 → 1  from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate James Clerk Maxwell Telescope (JCMT) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of 12CO and 13CO have a large linewidth due to a high-velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. C18O and C17O do not display such a large linewidth as they trace denser quiescent material deep in the cloud.  相似文献   

2.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

3.
The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 and Polarimeter 2 on the James Clerk Maxwell Telescope. This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O   J = 3 → 2  towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all the three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a clumpfind analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.  相似文献   

4.
We performed an observational study of the dark filaments Lupus 1 and Lupus 4 using both polarimetric observations of 190 stars and a sample of 72 12CO profiles towards these clouds. We have estimated lower limits to the distances of Lupus 1 and Lupus 4 (≳ 140 and ≳ 125 pc, respectively). The observational strategy of the survey allows us to compare the projected magnetic field in an extended area around each cloud with the magnetic field direction observed to prevail along the clouds. Lupus 4 could have collapsed along the magnetic field lines, while in Lupus 1 the magnetic field appears to be less ordered, having the major axis of the filaments parallel to the large-scale projected magnetic field. These differences would imply that both filaments have different pattern evolutions. From the CO observations we have probed the velocity fields of the filaments and the spatial extension of the molecular gas with respect to the dust.  相似文献   

5.
We present submillimetre observations of the   J = 3 → 2  rotational transition of 12CO, 13CO and C18O across over 600 arcmin2 of the Perseus molecular cloud, undertaken with the Heterodyne Array Receiver Programme (HARP), a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with the Submillimetre Common-User Bolometer Array (SCUBA; Hatchell et al.) and the positions of starless and protostellar cores (Hatchell et al.). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species  ([13CO]/[C18O]∼ 7)  and their opacities (typically τ is 0.02–0.22 and 0.15–1.52 for the C18O and 13CO gas, respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond  τ18∼ 0.9  . Assuming the 12CO gas is optically thick, we compute its excitation temperature, T ex (around 8–30 K), which has little correlation with estimates of the dust temperature.  相似文献   

6.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

7.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

8.
The 'Carina Flare' supershell, GSH 287+04−17, is a molecular supershell originally discovered in  12CO( J = 1–0)  with the NANTEN 4 m telescope. We present the first study of the shell's atomic ISM, using H  i 21-cm line data from the Parkes 64-m telescope Southern Galactic Plane Survey. The data reveal a gently expanding,  ∼230 × 360  pc H  i supershell that shows strong evidence of Galactic Plane blowout, with a break in its main body at   z ∼ 280  pc and a capped high-latitude extension reaching   z ∼ 450  pc. The molecular clouds form comoving parts of the atomic shell, and the morphology of the two phases reflects the supershell's influence on the structure of the ISM. We also report the first discovery of an ionized component of the supershell, in the form of delicate, streamer-like filaments aligned with the proposed direction of blowout. The distance estimate to the shell is re-examined, and we find strong evidence to support the original suggestion that it is located in the Carina Arm at a distance of  2.6 ± 0.4 kpc  . Associated H  i and H2 masses are estimated as   M H I≈ 7 ± 3 × 105 M  and     , and the kinetic energy of the expanding shell as   E K ∼ 1 × 1051  erg. We examine the results of analytical and numerical models to estimate a required formation energy of several 1051 to  ∼1052  erg, and an age of  ∼107 yr  . This age is compatible with molecular cloud formation time-scales, and we briefly consider the viability of a supershell-triggered origin for the molecular component.  相似文献   

9.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

10.
We present the first results of a submillimetre continuum survey of Lynds dark clouds. Submillimetre surveys of star-forming regions are an important tool with which to obtain representative samples of the very first phases of star formation. Maps of 24 small clouds were obtained with SCUBA, the bolometer array receiver at the James Clerk Maxwell Telescope, and 19 clouds were detected. The total dark cloud area surveyed was ∼130 arcmin2, and a total gas mass of 90 M was detected. The dust emission is in general in good agreement with the extinction of optical starlight. The observed clouds contain a newly discovered protostar in L944, and a previously known protostar IRAS 23228+4320 in L1246. Another eight starless cores, either gravitationally unbound or pre-stellar in nature, were also detected. All starless cores and protostars were detected in only seven clouds, and the remaining 17 clouds seem quiescent and do not show any signs of recent star formation activity. The 850-μm images of all detected clouds are presented, as well as 450-μm images of L328, L944, L1014 and L1262. The outflows of the protostars in L944 and L1246 were also discovered and were mapped in 12CO J =2→1. The detection of the young protostar in L944, which is not present in the IRAS Point Source Catalog, shows the capacity of submillimetre surveys to detect unknown protostars.  相似文献   

11.
Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H  i , 12CO( J = 2–1) and 13CO( J = 2–1). We detect weak CO emission (peak   T *A  = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is  0.1–1.2 M  , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.  相似文献   

12.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

13.
We present submillimetre data for the L1689 cloud in the ρ Ophiuchi molecular cloud complex. We detect a number of starless and pre-stellar cores and protostellar envelopes. We also detect a number of filaments for the first time in the submillimetre continuum that are parallel both to each other, and to filaments observed in the neighbouring L1688 cloud. These filaments are also seen in the 13CO observations of L1689. The filaments contain all of the star-formation activity in the cloud. L1689 lies next to the well-studied L1688 cloud that contains the ρ Oph-A core. L1688 has a much more active star-formation history than L1689 despite their apparent similarity in 13CO data. Hence, we label L1689 as the dog that didn't bark. We endeavour to explain this apparent anomaly by comparing the total mass of each cloud that is currently in the form of dense material such as pre-stellar cores. We note firstly that L1688 is more massive than L1689, but we also find that when normalized to the total mass of each cloud, the L1689 cloud has a much lower percentage of mass in dense cores than L1688. We attribute this to the hypothesis of Loren that the star formation in the ρ Ophiuchi complex is being affected and probably dominated by the external influence of the nearby Upper Scorpius OB association and predominantly by σ Sco. L1689 is further from σ Sco and is therefore less active. The influence of σ Sco appears none the less to have created the filaments that we observe in L1689.  相似文献   

14.
The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2–1) at 21-arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly east–west, consistent with previous observations of CO, X-ray, Hα and dust emission. The total detected molecular hydrogen mass is ∼ 1.6 × 1010 M, using a Galactic conversion factor. The inner central rotating disc is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards-asymmetric, consistent with previous observations in H  i and [O  iii ]. We suggest that the blueshift may be due to an acquired mean velocity of ∼ 150 km s−1 imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bo¨hringer et al. for displaced X-ray emission. We have also made the first observations of 13CO(2–1) and 12CO(3–2) emission from the central 21-arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by single values of kinetic temperature, molecular hydrogen density and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.  相似文献   

15.
To better understand the conditions under which ice mantles form on grains in molecular clouds, three globules in the Southern Coalsack have been searched for the presence of H2O ice. Given the total lack of star formation in the Coalsack, it is an ideal site for studying unprocessed icy molecular mantles. In our sample of eight field stars lying behind the Coalsack we detect strong H2O ice absorption in the lines of sight to two stars and possible weak absorption in four others. We estimate H2O ice column densities or upper limits for these lines of sight. Compared to dark clouds such as Taurus, the Coalsack H2O ice column densities are lower than expected given the quiescent nature of the Coalsack region. It is possible that the chemical evolution of the Coalsack may simply be at too early a stage for significant ice mantles to appear on the grains, except perhaps in the densest parts of some of the globules. Alternatively, the presence or absence of ice absorption may be related to the distribution of dust along each line of sight, specifically, the relative contributions of dense globules and a more extended diffuse component. For example, our observations are consistent with an ice threshold extinction similar to that observed in the Taurus dark cloud if extinction amounting to   A V∼5  towards Globules 2 and 3 arises in the extended component. Globule 1 appears to have no extended component.  相似文献   

16.
C18O J  = 2–1, C17O J  = 2–1 and [C  I ] 3P13P0 emission from the dense cold cloud B335 has been observed and modelled in order to determine the C/CO ratio. The observed ratio is compared with a prediction by Tarafdar who assumes a mechanism in which the CO dissociation is caused by photons of energy ∼ 13.8 eV. These were postulated by Sciama to result from the decay of dark matter neutrinos. Our value for the C/CO ratio sets an upper limit to the strength of the neutrino decay dissociation process, thus providing a significant datum for interstellar chemistry theory.  相似文献   

17.
We present  12CO ( J = 1–0)  and  12CO ( J = 2–1)  observations of eight early-type galaxies, forming part of a sample of interacting galaxies, each consisting of one late- and one early-type system. All of the early-type galaxies observed are undetected in CO to low levels, allowing us to place tight constraints on their molecular gas content. Additionally, we present H  i absorption data for one system. The implications for possible gas transfer from the late- to the early-type galaxy during the interaction are discussed.  相似文献   

18.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

19.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

20.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号