首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Benjamin-Ono equation is derived for long slow sausage waves propagating in a vertical magnetic slab embedded into a stratified atmosphere, provided that the slab thickness is much smaller than the scale height of the atmosphere. The soliton propagation in a nonstratified atmosphere is discussed. The approximate formulas describing the slow evolution of the amplitude and the length of a soliton propagating in a very weakly stratified atmosphere are obtained. The exact soliton-like solution for an atmosphere with a linearly growing temperature is found.  相似文献   

2.
The electromagnetic and particle cascade resulting from the absorption of galactic cosmic rays in the atmosphere of Titan is shown to be an important mechanism for driving the photochemistry at pressures of 1 to 50 mbar in the atmosphere. In particular, the cosmic ray cascade dissociates N2, a process necessary for the synthesis of nitrogen organics such as HCN. The important interactions of the cosmic ray cascade with the atmosphere are discussed. The N2 excitation and dissociation rates and the ionization rates of the principal atmospheric constituents are computed for a Titan model atmosphere that is consistent with Voyager 1 observations. It is suggested that HCN may be formed efficiently in the lower atmosphere through the photodissociation of methylamine. It is also argued that models of nitrogen and hydrocarbon photochemistry in the lower atmosphere of Titan should include the absorption of galactic cosmic rays as an important energy source.  相似文献   

3.
The competition between impact erosion and impact supply of volatiles to planetary atmospheres can determine whether a planet or satellite accumulates an atmosphere. In the absence of other processes (e.g., outgassing), we find either that a planetary atmosphere should be thick, or that there should be no atmosphere at all. The boundary between the two extreme cases is set by the mass and velocity distributions and intrinsic volatile content of the impactors. We apply our model specifically to Titan, Callisto, and Ganymede. The impacting population is identified with comets, either in the form of stray Uranus-Neptune planetesimals or as dislodged Kuiper belt comets. Systematically lower impact velocities on Titan allow it to retain a thick atmosphere, while Callisto and Ganymede get nothing. Titan's atmosphere may therefore be an expression of a late-accreting, volatile-rich veneer. An impact origin for Titan's atmosphere naturally accounts for the high D/H ratio it shares with Earth, the carbonaceous meteorites, and Halley. It also accounts for the general similarity of Titan's atmosphere to those of Triton and Pluto, which is otherwise puzzling in view of the radically different histories and bulk compositions of these objects.  相似文献   

4.
Water is the only substance that occurs not only in all three phases, gaseous, fluid, and solid in the Earth's atmosphere but also in transitions between them like in its “polymer forms” - clusters, clathrates, aerosols. Although the importance of the solid and fluid forms is popularly understood, there is less general understanding of the role of water vapor and especially for its polymer forms than for example, of carbon dioxide (C02) or ozone (03). The spatial and temporal distributions of the various phases of water in the atmosphere are in fact very important factors to climate, weather, the biosphere, the homogeneous and inhomogeneous chemistry of the atmosphere, as well as to the propagation of electromagnetic waves used in transatmospheric (global) navigation and communication systems and for relevant remote sensing measurements. In this context the atmosphere acts like a temporal and spatial variable, frequency dependent filter. Despite the fact that above the tropopause, i.e. in the stratosphere and mesosphere, there is less than 0.1 % of the total water vapor content of the Earth's atmosphere its influence is very significant for the physics and chemistry of the upper atmosphere and hence for the climate. The question is discussed: How variable is the total hydrogen budget of the Earth's atmosphere with time?  相似文献   

5.
Numerical solutions of the non-linear equations of fluid dynamics for a compressible inviscid initially isothermal atmosphere are given using Lax' method for the integration of the equations when discontinuities occur in the flow. The motion of the atmosphere is studied following the heating of a thin layer in the atmosphere. It is found that for a sufficiently large heat input the atmosphere strongly expands towards the regions of lower densities. In most cases a shock wave is formed which precedes the expanding region. The possible occurrence of thermally generated motions in the solar chromosphere is discussed.On leave from the University of Wyoming at Laramie, Wyoming.  相似文献   

6.
The vector equation of radiative transfer is solved for non-conservative homogeneous plane-parallel atmosphere using the method of discrete ordinates. The scattering processes in the atmosphere bounded by a Lambert bottom are described by the Rayleigh-Cabannes phase matrix. The primary radiation field is generated by constant internal sources. A package of FORTRAN subroutines is compiled to find the axial radiation field for such an atmosphere at arbitrary optical depth.  相似文献   

7.
The effects of curvature in an atmosphere with pure absorption are investigated. Numerical solution of the transfer equation has been obtained in the framework of the Discrete Space Theory of Radiative Transfer. Two cases have been considered: (a) the atmosphere is irradiated at the bottom and there is no incident radiation at the top of the atmosphere; and (b) no radiation is incident on either side of the atmosphere. It is found that the thermal sources inside the atmosphere dominantly influence the emergent radiation and this is very much so, in the spherical case and for large optical thickness. The emergent luminosities increase with the geometrical thickness although the emergent specific intensities are reduced and the former seems to be because of the larger surface area and later seems to be because of the effects of curvature.  相似文献   

8.
A generalized wave-optical theory of stellar occultations by a turbulent planetary atmosphere is developed. The finite scale height of the atmosphere is retained for the first time. It is found that the finite scale height of the atmosphere affects the scintillations observed during the occultation in a number of ways which are most easily understood in terms of an effective Fresnel scale. We demonstrate the validity of a phase-changing screen approximation for occultation by a turbulent atmosphere in parameter ranges of general interest. Using this approximation various statistical properties of the fluctuating intensity are calculated explicitly. We present expressions for the total scintillation power, correlation function of the intensity, the cross-correlation at two frequencies, and its application to refractivity determinations. All of these expressions are given as a function of occultation depth and of parameters of the mean atmosphere and turbulence.  相似文献   

9.
Ralph Kahn 《Icarus》1982,49(1):71-85
We show how crater size-density counts may be used to help constrain the history of the Venus atmosphere, based on the predictions of simple but reasonable models for crater production, surface erosion, and the effects of atmospheric drag and breakup on incident meteors in the Venus atmosphere. If the atmosphere is old, we may also be able to determine the importance of breakup as a mechanism for destroying incident meteors in a dense fluid. In particular, if the atmosphere is young, the old (uneroded) surfaces will have crater densities upward of 10?4 km?2 and a ratio of small (4 km) craters to large (128 km) craters near 103. If the atmosphere is old and the breakup mechanism is dominant, absolute crater densities on Venus surfaces will be diminished by several orders of magnitude relative to the young atmosphere case. If atmospheric drag is dominant and the atmosphere is old, the absolute crater density will be lowered by perhaps an order of magnitude relative to the young atmosphere case, and the ratio of small to large craters will be reduced to a value near 101.5 according to the models. The comparison of crater populations on young, as well as old, surfaces on Venus can help in distinguishing the young and old atmosphere scenarios, especially since the situation may be complicated by currently undetermined erosional and tectonic processes. Once a large fraction of Venus surface has been imaged at kilometer resolution, as the VOIR project promises to do, it could be possible to make an early determination of the age of the Venus atmosphere.  相似文献   

10.
The behavior of Io’s atmosphere during and after eclipse is investigated on the basis of kinetic theory. The atmosphere is mainly composed of sulfur dioxide (SO2) gas, which condenses to or sublimates from the frost of SO2 on the surface depending on the variation of surface temperature (~90–114 K). The atmosphere may also contain a noncondensable gas, such as sulfur monoxide (SO) or oxygen (O2), as a minor component. In the present study, an accurate numerical analysis for a model Boltzmann equation by a finite-difference method is performed for a one-dimensional atmosphere, and the detailed structure of unsteady gas flows caused by the phase transition of SO2 is clarified. For instance, the following scenario is obtained. The condensation of SO2 on the surface, starting when eclipse begins, gives rise to a downward flow of the atmosphere. The falling atmosphere then bounces upward when colliding with the lower atmosphere but soon falls again. This process of falling and bounce back of the atmosphere repeats during the eclipse, resulting in a temporal oscillation of the macroscopic quantities, such as the velocity and temperature, at a fixed altitude. For a pure SO2 atmosphere, the amplitude of the oscillation is large because of a fast downward flow, but the oscillation decays rapidly. In contrast, for a mixture, the downward flow is slow because the noncondensable gas adjacent to the surface hinders the condensation of SO2. The oscillation in this case is weak but lasts much longer than in the case of pure SO2. The present paper is complementary to the work by Moore et al. (Moore, C.H., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Stewart, B. [2009]. Icarus 201, 585–597) using the direct simulation Monte Carlo (DSMC) method.  相似文献   

11.
大气对地球自转参数(ERP)的高频激发   总被引:4,自引:0,他引:4  
谢伯全  郑大伟 《天文学报》1996,37(2):113-123
本文采用1983—1992年期间由空间大地测量技术观测和归算的地球自转参数(ERP)序列,以及由全球气象资料归算的大气角动量(AAM)序列,分析和研究了大气对地球自转参数的日长变化(LOD)和极移(x和y)在一个月时间尺度以内的高频激发作用,得到的主要结果如下:1大气对LOD分量高频潮汐的估计值存在着影响,但是,潮汐形变参数k/c随时间和频率的变化却是受非大气因素的扰动引起的.2.大气可以解释30天以下LOD非潮汐的大部分变化.3.极移分量30天以内的高频变化也主要由大气激发.x分量与大气的相关性要强于y分量,而且更为稳定,主要表现为平均时间尺度约为27天的波动,大气对这个波动的贡献可达70%.  相似文献   

12.
T L Schindler  J F Kasting 《Icarus》2000,145(1):262-271
NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.  相似文献   

13.
G.E. Hunt 《Icarus》1973,18(4):637-648
The theory of formation of pressure-broadened methane lines and collision-narrowed hydrogen quadrupole lines in a Jovian atmosphere is studied in detail for a physically realistic model of the planet's lower atmosphere. Only observations of the center-to-limb (CTL) variations of the equivalent width of absorption lines for both of these molecules can identify the structure of the visible cloud layers. Observations of the CTL variation of methane and hydrogen quadrupole lines are the most suitable for studying the Jovian atmosphere. The CTL variations for hydrogen are much greater and more sensitive to variations of the properties of the thin upper tropospheric cloud layer than the corresponding observations of methane lines. A detailed comparison of hydrogen quadrupole with methane lines is made for the same continuum conditions, enabling us to develop a detailed understanding of the formation of the collision-narrowed hydrogen quadrupole lines in a Jovian atmosphere.  相似文献   

14.
For the evaluation of the effect of the nonuniform surface albedo to the emergent radiation from the atmosphere, the emergent radiation from the atmosphere bounded by the two-halves of the Lambert surface with different albedos is computed. The principal plane is assumed to be perpendicular to the boundary of surfaces. The atmosphere is assumed to be homogeneous, which is composed of aerosol, molecules, and absorbent gases. Their optical thicknesses are 0.25, 0.23, and 0.02, respectively. The model aerosol is of the oceanic and water soluble types.In the computational procedure, the emergent radiation is approximated by the contributions due to the multiple scattering in the atmosphere, directly attenuated radiation, and radiation due to single scattering in the atmosphere which is reflected by the Lambert surface (up to 4 interactive radiative modes between atmosphere and surface). For quantitative analysis, results are compared with those of the atmosphere-uniform surface model, where the multiple scattering is considered. The numerical simulation exhibits the extraordinary effect near the surface boundary of different albedos. The effect decreases exponentially with the distance from the boundary. It is a function of the observational position, difference of surface albedos, optical thickness and aerosol type.The upward radiance would simply be evaluated using the present scattering approximation method if the atmosphere is in clear condition. Whereas in hazy condition, the effect of multiple scattering in the atmosphere should be considered more precisely, since the upward radiance exhibit a strong dependence on observational nadir angles due to multiple scattering in the atmosphere. Furthermore, it depends on the optical characteristics of aerosols.  相似文献   

15.
A new way is adopted for the evaluation of the upwelling radiation from atmosphere bounded by two half-Lambert surfaces. The atmosphere is assumed to be homogeneous, and is composed of aerosol, molecules, and absorbent gases, where the model aerosol is of the oceanic and water soluble types.In the computational procedure, an iterative doubling-adding equation is expanded into a series of the radiative interaction modes between atmosphere and surface. Next, a probability of radiation interacting with respective half surfaces is calculated based on the assumption of single-scattering in the atmosphere. On the basis of this probability, the emergent radiation at the top of the atmosphere is approximately calculated by considering the radiative intractions to be twice as large. The effect of the multiple-scattering is fully taken into account. A numerical simulation exhibits the extraordinary effect near the two half-surface boundary of different albedoes. The effect of the other half-surface on the radiance decreases monotonically with the distance from the boundary. The present new version enable us to quantitatively discuss radiative transfer near the boundary of two half-surfaces even if the optical thickness is large and (or) surface albedo is great.  相似文献   

16.
Equations are developed to describe the flow of a rotating atmosphere under force of gravitation heated by an arbitrary distribution of cylindrical shock waves. Solutions are obtained for the outer solar atmosphere with a steady mass motion in which the heat supplied by shock wave is balanced by the convective heat loss due to this motion. It is found that, for very large range of shock strength and frequencies, the temperature profile is similar to that predicted by the constant shock-strength hypothesis. This hypothesis is used as the basis of a model of the outer solar atmosphere starting near the solar atmosphere.  相似文献   

17.
To evaluate the effect of the cliff on the radiation field, the upwelling radiation at the top of the atmosphere is computed over the cliff using the reflection and transmission functions derived from the doubling-adding method. The model is defined by the plane-parallel homogeneous atmosphere, which is composed of aerosol and molecules, and is bounded by the top level surface, cliff and low level surface. These surfaces may be assumed to be the Lambertian.In the computational procedure, the equation for the emergent radiation is expanded into a series of radiative interaction modes among atmosphere, surfaces and the cliff. In respective modes, probabilities of respective interactions are firstly evaluated. With the aid of these probabilities, the emergent radiation is calculated using the doubling-adding method for the model atmosphere bounded by the surfaces and cliff, where the above radiative interactions are considered upto twice as large to obtain the enough accuracy of simulation. The multiple scattering is considered.  相似文献   

18.
Bruce M. Jakosky 《Icarus》1983,55(1):19-39
The behavior of water vapor in the Mars atmosphere requires that there be a seasonally accessible nonatmospheric reservoir of water. Coupled models have been constructed which include exchange of water with the regolith and with the polar caps, and transport through the atmosphere due to its circulation. Comparison of the model results with the vapor observations and with other data regarding the physical nature of the surface allows constraints to be placed on the relative importance of each process. The models are capable of satisfactorily explaining the gross features of the observed behavior using plausible values for the regolith and atmosphere mixing terms. In the region between the polar caps, the regolith contributes as much water to the seasonal cycle of vapor as does transport in from the more-poleward regions, to within a factor of 2. Globally, 10–40% of the seasonal cycle of vapor results from exchange of water with the regolith, about 40% results from the behavior of the residual caps, and the remainder is due to exchange of water with the seasonal caps. It is difficult to determine the relative importance of the processes more precisely than this because both regolith and polar cap exchange of water act to first order in the same direction, producing the largest vapor abundance during the local summer. The system is ultimately regulated on the seasonal time scale by the polar caps, as the time to reach equilibrium between the atmosphere and regolith or between the polar atmosphere and the global atmosphere is much longer than the time for the polar caps to equilibrate with the local atmosphere. This same behavior will hold for longer time scales, with the polar caps being in equilibrium with the insolation as it changes on the obliquity time scale, and the atmosphere and regolith following along.  相似文献   

19.
The data obtained in space-borne measurements and the findings of turbulence theory show that turbulence, of both small and large scales, has a decisive influence on the structure and dynamics of the atmosphere of Venus. The small-scale turbulence generates anomalous convection, while large-scale turbulence induces the return spectral flux of energy that is the main element of the superrotation mechanism in the atmosphere. Ways for improving the general circulation model of the atmosphere of Venus are proposed.  相似文献   

20.
A method of computing the diffuse reflection and transmission radiation by an inhomogeneous, plane-parallel planetary atmosphere with internal emission source is discussed by use of the adding method. If the atmosphere is simulated by a number of homogeneous sub-layers, the radiation diffusely reflected or transmitted by the atmosphere can be expressed in terms of the reflection and transmission matrices of the radiation of sub-layers. The diffusely transmitted radiation due to the internal emission source can be also easily computed in the same manner. These equations for the emergent radiation are in a quite general form and are applicable to radiative transfer in the atmosphere in the region from ultraviolet to infrared radiation. With this method, the tiresome treatment due to the polarity effect of radiation is overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号