首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the radial scales, central surface brightnesses, and colors of 400 disks of various types of galaxies. For nine galaxies, the brightness decrease and the central disk brightness were obtained via a two-dimensional decomposition of the U BV RI J H K photometric images into bulge and disk components. We used published disk parameters for 392 of the galaxies. The central surface brightness μ 0,i 0 and linear (disk) scale length h vary smoothly along the Hubble sequence of galaxies within a rather narrow interval. The disks of relatively early-type galaxies display higher central K surface brightnesses, higher central surface densities, higher central mass-to-luminosity ratios M/L(B), smaller sizes (relative to the diameter of the galaxy D 25), redder integrated colors, and redder central colors. The color gradient normalized to the radius of the galaxy and the “blue” central surface brightness of the disk, μ 0,i/0(B), are both independent of the galaxy type. The radial disk scales in different photometric bands differ less in early-type than in late-type galaxies. A correlation between the central disk surface brightness and the total luminosity of the galaxy is observed. We also consider the influence of dust on the photometric parameters of the disks.  相似文献   

2.
We test the hypothesis put forward by Bosma (1981) that the surface density of dark matter is proportional to the surface density of HI, using decompositions of the rotation curves of a number of galaxies according to the THINGS, along with data for the galaxy NGC 6822. The rotation curves of these galaxies can be explained by assuming the existence of a massive gaseous disk in the absence of a dark halo, although the proportionality factor ??dark/??HI between the surface densities of dark matter and HI is different for different galaxies. However, there emerges the problem of the gravitational stability of galaxies whose stellar-velocity dispersions have been estimated, if the thickness of the dark-matter disk is similar to or less than the thickness of the stellar disk. The proportionality between ?? dark and ??HI is probably due to the fact that the radial profiles of ??HI for galaxies with flat rotational curves are close to the critical density of a gravitationally stable gaseous layer (??HI ?? R ?1), and ??dark(R) for a pseudo-isothermal halo obeys the same law.  相似文献   

3.
We explore the hypothesis that the outer boundaries (“cutoffs”) of the stellar disks observed in many galaxies are determined by the condition of local gravitational (Jeans) stability for the gaseous protodisks at large galactocentric distances. The ratio of the surface density of the disk Σdisk to the critical value for Jeans instability Σcrit is computed for a number of galaxies, assuming that the gas velocity dispersion in the forming disk corresponded to its current thickness and that the disk itself is in a quasi-equilibrium state. The mean estimated stellar velocity dispersion in the vicinity of the cutoff (12 km/s) is close to the typical velocity dispersions of gaseous clouds in disk galaxies. At greater distances, such velocity dispersions should ensure gravitational stability of the disk both at the present epoch and in the past. The cutoff radius of the disk R cut is correlated with other disk parameters, and the ratio Σdiskcrit at R cut is close to unity in most cases. We conclude that the available observational data agree well with the hypothesis that stellar disk cutoffs are due to a rapid decrease in the star-formation rate beyond R cut, where the gaseous disk has always been stable.  相似文献   

4.
Quantitative estimates of themaximumallowed totalmasses and sizes of the dark-matter halos in groups and associations of dwarf galaxies—special types of metagalactic populations identified in recent astronomical observations with the Hubble Space Telescope—are presented. Dwarf-galaxy systems are formed of isolated dark-matter halos with a small number of dark galaxies embedded in them. Data on the sizes of these systems and the velocity dispersions of the embedded galaxies can be used to determine lower limits on the total dark-halo masses using the virial theorem. Upper limits follow from the conditions that the systems immersed in the cosmic dark-energy background be gravitationally bound. The median maximum masses are close to 1012 M for both groups and associations of dwarf galaxies, although the median virial masses for these two types of systems differ by approximately a factor of ten.  相似文献   

5.
Large-scale streaming is analyzed using a sample of 983 thin, edge-on galaxies from the FGC catalog with radial velocities cz<18000 km s?1. The catalog covers the entire sky and contains galaxies with apparent axial ratios a/b>7 and angular diameters a>0.6 arcmin. The distances to the galaxies were determined using a multi-parameter “rotation amplitude-linear diameter” relation, which is similar to the Tully-Fisher relation and takes into account surface brightness, morphological type, and other global parameters. The bulk motion of the galaxy sample with respect to the frame of the microwave background radiation can be described by a dipole solution with amplitude V B =300±75 km s?1 in the direction (l=328°, b=+7°)±15°. The apex parameters for the FGC galaxies agree well with the amplitude and direction of the bulk motion for the Mark III compiled catalog, although the two samples have no objects in common. The dipole solution provides only a rough approximation to the smoothed peculiar-velocity field of the FGC galaxies. Areas of maxima and minima on the V pec map are not correlated with the locations of known nearby clusters and voids. A comparison of nearby and distant subsamples shows that the amplitude of the bulk motion with respect to the 3K reference frame does not decrease with distance. The observed large-scale galaxy streaming could be due to the Shapley concentration of rich clusters (311°, +30°), which is located within 2σ of the apex.  相似文献   

6.
A series of numerical N-body simulations is performed in order to dynamically model the properties of four galaxies (NGC 5603, NGC 3198, NGC 891, and NGC 1566) with known rotation curves, radial disk scales L, and velocity dispersions of old disk stars at various galactocentric distances r. Each model includes a three-dimensional collisionless disk and rigid spherical components, whose relative mass μ was treated as a free parameter that differed from simulation to simulation. The observed disk stellar velocity dispersions were assumed to be equal to or (in the general case) greater than the corresponding line-of-sight projections of the simulated values for the adopted μ after the initially unstable disk is heated and arrives at a steady state. A comparison of the simulated and observed rotational velocities and velocity dispersions provides evidence for “light” disks with μ≥2 in the disk (r<4L).  相似文献   

7.
We have carried out a search for low-surface-brightness dwarf galaxies in the region of the Leo-I Group (M96) in images of the second Palomar Sky Survey. We found a total of 36 likely dwarf members of the group with typical magnitudes B t ~18m–19m in an area of sky covering 120 square degrees. Half of these galaxies are absent from known catalogs and lists of galaxies. The radial-velocity dispersion calculated for 19 galaxies is 130 km/s. The Leo-I Group has a mean distance from the Sun of 10.4 Mpc, a mean projected radius of 352 kpc, an integrated luminosity of 6.7 × 1010L, a virial mass-to-luminosity ratio of 107 M/L, and a mean crossing time of 2.7 Gyr. The group shows evidence for a radial segregation of the galaxies according to morphological type and luminosity, suggesting that the group is in a state of dynamical relaxation. The subsystem of bright galaxies in the Leo-I Group is smaller in size (250 kpc) and has a lower velocity dispersion (92 km/s), resulting in a lower virial mass-to-luminosity ratio (34 M/L), as is typical of the Local Group and other nearby groups of galaxies.  相似文献   

8.
The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106?107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.  相似文献   

9.
The four well studied spiral galaxies M33, M81, M100, and M101 are used to analyze the dependences of the star-formation rate (SFR) and star-formation efficiency (SFE = SFR/M gas ) on galactocentric distance R and the photometric and some kinematic parameters of galactic disks. The dependences SFR(R) were estimated based on UV and far-infrared data using published extinction-corrected UV brightness profiles of the galaxies. The local SFE values are most closely related to the surface brightness (density) of the galactic disk at a given R, with this dependence being the same for all four galaxies (except for their central regions). In order to explain the observed disk densities in terms of a simple conservative model (“toy model”) for the evolution of the gas density, the local value of the parameter N in the Schmidt law for the disk (SFR ~ σ gas N ) must not exceed unity. In this case, the observed dependences σ gas (R) and SFE(R) can be matched assuming that accretion is occuring in the central regions of the disks.  相似文献   

10.
The results of multicolor surface photometry of the S0 galaxies NGC 524, NGC 1138, and NGC 7280 and the spiral galaxies NGC 532, NGC 783, and NGC 1589 are analyzed. UBVRI observations were acquired with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan), while JHK data were taken from the 2MASS catalog. The brightness and color distributions in the galaxies are analyzed. Extinction in dust lanes in three spiral galaxies is estimated. The contributions of the radiation of the spherical and disk components in different photometric bands are estimated. Two-color diagrams are used to estimate the composition of the stellar populations in various galaxy components. The variations of the color characteristics in the S0 galaxies is due mostly to radial metallicity gradients.  相似文献   

11.
Data on about forty virialized galaxy clusters with bright central galaxies, for which both the galactic velocity dispersion (?? gal) and the stellar velocity dispersion in the brightest galaxies (??*) are measured, have been used to obtain several approximate relations between ?? gal, ??*, the absolute B magnitude of the brightest central galaxyM B BCG , and the mass of the central massive black holeM BH: $\begin{gathered} \log \sigma _* = (0.12 \pm 0.14)\log \sigma _{gal} + (2.1 \pm 0.4), \hfill \\ \log \sigma _* = - (0.15 \pm 0.02)M_B^{BCG} + (0.85 \pm 0.5), \hfill \\ \log M_{BH} = 0.51\log \sigma _{gal} + 7.28. \hfill \\ \end{gathered} $ . These relations can be used to derive crude estimates ofMBH in the nuclei of the brightest galaxies using the parameters of the both host galaxies and the host galaxy clusters. The last relation above confirms earlier suggestions of a quadratic relation between the masses of the coronas of the host systems and the masses their central objects: M hg halo ?? M cent 2 . The relations obtained are consistent with the common evolution of subsystems with different scales and masses formed in the process of hierarchical clustering.  相似文献   

12.
We have used surface photometry data for 100 barred galaxies to determine the UBVRIJHK surface brightnesses and color indices for the bars. Two peaks are observed in the distribution of the average bar B brightnesses: at 21.0m/arcsec2 and 22.2m/arcsec2, characteristic of late-and early-type galaxies, respectively. The average surface-brightness difference between the bar and the galaxy (within the 25.0m/arcsec2 isophote) increases from 1.1m/arcsec2 for SB0 galaxies to 2.3m/arcsec2 for SBc-IBm galaxies. In (U-B)0-(B-V)0, (B-V 0-(V-R 0, and (B-V)0-(V-I)0 two-color diagrams, for all morphological types, the bars are shifted leftward from normal color sequence for galaxies. This deviation is more pronounced for the outer than for the inner regions of the bars. Using evolutionary models, we show that this deviation is due to the scarcity of intermediate-age [(1–9)×109 yrs] stars in bars. Possible origins for this anomalous composition of the stellar population are discussed.  相似文献   

13.
Observational data on the evolution of quasars and galaxies of various morphological types and numerical simulations carried out by various groups are used to argue that low-redshift (z < 0.5) quasars of types I and II, identified with massive elliptical and spiral galaxies with classical bulges, cannot be undergoing a single, late phase of activity; i.e., their activity cannot be “primordial,” and must have “flared up” at multiple times in the past. This means that their appearance at low z is associated with recurrence of their activity—i.e., with major mergers of gas-rich galaxies (so-called wet major mergers)—since their lifetimes in the active phase do not exceed a few times 107 yrs. Only objects we have referred to earlier as AGN III, which are associated with the nuclei of isolated, late-type spiral galaxies with low-mass, rapidly-rotating “pseudobulges,” could represent primordial AGNs at low z. The black holes in such galaxies have masses M BH < 107 M , and the peculiarities of their nuclear spectra suggest that they may have very high specific rotational angular momenta per unit mass. Type I narrow-line (widths less than 2000 km/s) Seyfert galaxies (NLSyIs) with pseudobulges and black-hole masses M BH < 107 M may be characteristic representatives of the AGN III population. Since NLSyI galaxies have pseudobulges while Type I broad-line Seyfert galaxies have classical bulges, these two types of galaxies cannot represent different evolutionary stages of a single type of object. It is possible that the precursors of NLSyIs are “Population A” quasars.  相似文献   

14.
An analysis of spectroscopic and photometric data for the young pre-cataclysmic variable (PCV) PN G068.1+11.0, which passed through its common-envelope stage relatively recently, is presented. The spectroscopic and photometric data were obtained with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory. The light curves show sinusoidal brightness variations with the orbital-period time scale and brightness-variation amplitudes of Δm = 1.m41, 1.m62, and 1.m57 in the B, V, and R bands, respectively. The system’s spectrum exhibits weak HI (Hβ–Hδ) andHeII λλ4541, 4686, 5411 Å absorption lines during the phases of minimum brightness, as well as HI, HeII, CIII, CIV, NIII, and OII emission lines whose intensity variations are synchronized with variations of the integrated brightness of the system. The emission-line formation in the spectra can be fully explained by the effects of fluorescence of the ultraviolet light from the primary at the surface of the cool star. All the characteristics of the optical light of PN G068.1+11.0 confirm that it is a young PCV containing sdO subdwarf. The radial velocities were measured from a blend of lines of moderately light elements, CIII+NIII λ4640 Å, which is formed at the surface of the secondary due to reflection effects. The ephemeris of the system has been improved through a joint analysis of the radial-velocity curves and light curves of pre-cataclysmic variable, using modelling of the reflection effects. The fundamental parameters of PN G068.1+11.0 have been determined using two evolutionary tracks for planetary-nebula nuclei of different masses (0.7 Mand 0.78M). The model spectra for the system and a comparison with the observations demonstrate the possibility of refining the components’ effective temperatures if the quality of the spectra used is improved.  相似文献   

15.
Spectroscopic observations of three lenticular (S0) galaxies (NGC 1167, NGC 4150, and NGC 6340) and one SBa galaxy (NGC 2273) have been taken with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences aimed to study the structure and kinematic properties of early-type disk galaxies. The radial profiles of the stellar radial velocities and the velocity dispersion are measured. N-body simulations are used to construct dynamical models of galaxies containing a stellar disk, bulge, and halo. The masses of individual components are estimated formaximum-mass disk models. A comparison of models with estimated rotational velocities and the stellar velocity dispersion suggests that the stellar disks in lenticular galaxies are “overheated”; i.e., there is a significant excess velocity dispersion over the minimum level required to maintain the stability of the disk. This supports the hypothesis that the stellar disks of S0 galaxies were subject to strong gravitational perturbations. The relative thickness of the stellar disks in the S0 galaxies considered substantially exceed the typical disk thickness of spiral galaxies.  相似文献   

16.
Results of numerical simulations of a collision of the gaseous components of two identical disk galaxies during a head-on collision of the galaxies in the polar direction are presented. When the relative velocity of the galaxy collision is small, their gaseous components merge. At high relative velocities (100–500 km/s), the massive stellar components of the galaxies (M g = 109 M ) pass through each other nearly freely, leaving behind the gaseous components, which are decelerated and heated by the collision. If the overall gaseous component of the colliding galaxies is able to cool to the virial temperature during the collision, a new galaxy forms. At velocities V ≥ 500 km/s, the gaseous component does not have time to cool, and the gas is scattered into intergalactic space, supplying it with heavy elements produced in supernovae in the colliding galaxies. High-velocity (V ≥ 100 km/s) collisions of identical low-mass galaxies (M g ≤ 109 M ) whose mass is dominated by the mass of gas lead to the disruption of their stellar components. The overall gaseous component forms a new galaxy when V ≤ 500 km/s, and is scattered into intergalactic space if the velocity becomes higher than this. A galaxy collision increases the star-formation rates in the disk galaxies by nearly a factor of 100. Rotation of the colliding galaxies in the same direction increases the changes of the disruption of both the stellar and gaseous components of the galaxies. The merger of galaxies during their collision can explain the presence of gaseous disks rotating opposite to the rotation of the stellar component in some ordinary elliptical galaxies. Moreover, galaxy mergers can help explain the origin of a comparatively young stellar population in some elliptical galaxies.  相似文献   

17.
The narrow-band λ4244 Å continuum light curve of the eclipsing binary V444 Cyg, which has a Wolf-Rayet component, is interpreted assuming that the brightness distribution and absorption in the WN5 star's disk are monotonic, non-increasing, convexo-concave, non-negative functions. The convex and concave parts of these functions correspond to the core of the WN5 star and its extended photosphere and atmosphere, respectively. The radius and brightness temperature of the opaque core of the WN5 star are r WN5 core ? 4R and T br core >52000 K, respectively. The stellar wind is characterized by an accelerated radial outflow. Acceleration of the wind persists at large distances from the center of the star. A crude Lamers-law fit to the reconstructed velocity field in the wind yields an acceleration parameter β=1.58–1.82.  相似文献   

18.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

19.
Sabugalite has been synthesized directly from pure chemicals. From chemical, differential thermal and thermogravimetric analyses, its formula is calculated as HA1(UO2/PO4)2·16H2O. The natural relationship between hydrogen autunite, autunite and sabugalite was investigated by means of ion exchange experiments, and its infrared spectrum, electrokinetic properties and solubility studied. An increase in solubility results in a more positive zeta-potential. The cell dimensions have been determined from Guinier-Hägg diffraction data. Synthetic sabugalite crystallizes in the monoclinic system with space group C2/m and cell parameters: a=19.426 Å; b=9.843 Å; c=9.850 Å; α=γ=90°; β=96.161°; V=1,872.54 Å3 and Z=2.  相似文献   

20.
Results of a study of the shell of Nova V2659 Cyg based on spectrophotometric observations carried out over a year and a half after its eruption are presented. The physical conditions in the nova shell have been studied. The electron temperature (9000 K) and density (5 × 106 cm?3) in the nebular stage have been estimated, together with the abundances of helium, oxygen, nitrogen, neon, argon, and iron. The abundances of nitrogen, oxygen, neon, and argon are enhanced relative to the solar values. The relative abundances are [N/H] = 2.26 ± 0.25 dex, [O/H] = 1.66 ± 0.35 dex, [Ne/H] = 0.78 ± 0.25 dex, and [Ar/H] = 0.32 ± 0.38 dex. The estimated mass of oxygen and total mass of the emitting shell are ≈1 × 10?4M and ≈3 × 10?4M, respectively. In the period of chaotic brightness oscillations, the maximum velocity of the shell expansion derived from the radial velocities of the absorption components of the HI and FeII line profiles increased by ≈400 km/s 41 days after the maximum, and by ≈200 km/s 101 days after the maximum, reaching 1600 km/s in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号