首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The head velocity of the density current in the convergent and divergent channel is a key parameter for evaluating the extent to which suspended material travels,and for determining the type and distribution of sediment in the water body.This study experimentally evaluated the effects of the reach degree of convergence and divergence on the head velocity of the density current.Experiments were conducted in the flume with 6.0 m long,0.72 m width and 0.6 m height.The head velocity was measured at three convergent degrees(-8°;-12°;-26°),at three divergent degrees(8°;12°;26°) and two slopes(0.009,0.016) for various discharges.The measured head velocity of the density current is compared with the head velocity of the density current in the constant cross section channel. Based on non-dimensional and statistical analysis,relations as linear multiple regression offered for prediction head velocity of the density current in the convergent,divergent and constant cross section channel.Also the results of this research show that for the same slope and discharge,the head velocity of the density current in the convergent and divergent channel are greater and less than the head velocity of the constant cross section, respectively.  相似文献   

2.
Discharge, especially during flood periods, is among the most important information necessary for flood control, water resources planning and management. Owing to the high flood velocities, flood discharge usually cannot be measured efficiently by conventional methods, which explains why records of flood discharge are scarce or do not exist for the watersheds in Taiwan. A fast method of flood discharge estimation is presented. The greatest advantage of the proposed method is its application to estimate flood discharge that cannot be measured by conventional methods. It has as its basis the regularity of open‐channel flows, i.e. that nature maintains a constant ratio of mean to maximum velocities at a given channel section by adjusting the velocity distribution and the channel geometry. The maximum velocity at a given section can be determined easily over a single vertical profile, which tends to remain invariant with time and discharge, and can be converted to the mean velocity of the entire cross‐section by multying by the constant ratio. Therefore the mean velocity is a common multiple of maximum velocity and the mean/maximum velocity ratio. The channel cross‐sectional area can be determined from the gauge height, the water depth at the y‐axis or the product of the channel width multiplied by the water depth at the y‐axis. Then the most commonly used method, i.e. the velocity–area method, which determines discharge as the product of the cross‐sectional area multiplied by mean velocity, is applied to estimate the flood discharge. Only a few velocity measurements on the y‐axis are necessary to estimate flood discharge. Moreover the location of the y‐axis will not vary with time and water stage. Once the relationship of mean and maximum velocities is established, the flood estimation can be determined efficiently. This method avoids exposure to hazardous environments and sharply reduces the measurement time and cost. The method can be applied in both high and low flows in rivers. Available laboratory flume and stream‐flow data are used to illustrate accuracy and reliability, and results show that this method can quickly and accurately estimate flood discharges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The behaviour of the shear velocity along a gravel-bed channel is investigated experimentally in the presence of a negative pressure gradient (accelerating flow). Different methods of estimation of the shear velocity, derived from vertical profiles of the mean longitudinal point velocity, are examined and a new method is proposed. Results show that the proposed method of estimation is comparable to the St Venant and Clauser's methods. At a specific cross section, for constant bottom slope and relative roughness, shear velocity increases with discharge.  相似文献   

4.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

5.
Stream biophysical processes are commonly studied using multi-dimensional numerical modelling that quantifies flow hydraulics from which parameters such as habitat suitability, stream carrying capacity, and bed mobility are derived. These analyses would benefit from accurate high-resolution stream bathymetries spanning tens of kilometres of channel, especially in small streams or where navigation is difficult. Traditional ground-based survey methods are limited by survey time, dense vegetation and stream access, and are usually only feasible for short reaches. Conversely, airborne topobathymetric LiDAR surveys may overcome these limitations, although limited research is available on how errors in LiDAR-derived digital elevation models (DEMs) might propagate through flow models. This study investigated the performance of LiDAR-derived topobathymetry in support of multi-dimensional flow modelling and ecohydraulics calculations in two gravel-bedded reaches (approximately 200 m long), one morphologically complex and one morphologically simple, and at the segment scale (32 km-long stream segment) along a 15 m-wide river in central Idaho, USA. We compared metre and sub-metre-resolution DEMs generated from RTK-GPS ground and Experimental Advanced Airborne Research LiDAR-B (EAARL-B) surveys and water depths, velocities, shear stresses, habitat suitability, and bed mobility modelled with two-dimensional (2D) hydraulic models supported by LiDAR and ground-surveyed DEMs. Residual statistics, bias (B), and standard deviation (SD) of the residuals between depth and velocity predicted from the model supported by LiDAR and ground-survey topobathymetries were up to −0.04 (B) and 0.09 m (SD) for depth and −0.09 (B) and 0.20 m s−1 (SD) for velocity. The accuracy (B = 0.05 m), precision (SD = 0.09 m), and point density (1 point m−2) of the LiDAR topobathymetric survey (regardless of reach complexity) were sufficient to support 2D hydrodynamic modelling and derivative stream habitat and process analyses, because these statistics were comparable to those of model calibration with B = 0 m and SD = 0.04 m for water surface elevation and B = 0.05 m s−1 and SD = 0.22 m s−1 for velocity in our investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   

7.
Most studies of benthic macroinvertebrate communities are from shallow lakes or restricted to the littoral zone of deep, temperate lakes, with just a few dealing with the deep benthos. Furthermore, the deep benthic macroinvertebrate communities of tropical lakes are almost unknown. The present work describes the benthic macroinvertebrate communities of three tropical, warm monomictic lakes in “Lagunas de Montebello” National Park, Mexico, by describing the differences along the bathymetric profile, from the littoral down to the profound benthos. We studied the benthic macroinvertebrate communities in the two contrasting hydrodynamic periods of the warm monomictic lakes: a) stratification, when the hypolimnion becomes anoxic, and b) mixing, when the water column becomes oxygenated. We expected: 1) a reduction in the benthic macroinvertebrate taxonomic richness, density, and biomass from the littoral to the deep zone, 2) an impoverished benthic macroinvertebrate community while stratified (anoxia) compared to mixing (oxygenated), and 3) depletion in the taxonomic richness, density, and biomass of the profundal benthic macroinvertebrates in the tropical compared to temperate lakes. We found: 1) a decreasing trend in taxonomic richness (6 ± 2–3 ± 1 taxa), density (1868.7 ± 1069.7–349.1 ± 601.8 in. m−2) and biomass (277.8 ± 188.9–85.1 ± 95.6 mg C m−2) from the littoral to the deep zone; chironomids dominated the littoral zone, while oligochaetes dominated the deep zone. 2) Lower density and biomass but not taxonomic richness while stratified (4 ± 3 taxa; 586.2 ± 527.6 in. m−2; 81.6 ± 164.3 mg C m−2) compared to mixing (4 ± 3 taxa; 877.5 ± 1051.4 in. m−2; 190.1 ± 131.1 mg C m−2). 3) lower taxonomic richness and density but not biomass in tropical Montebello oligotrophic lakes (3 ± 3 taxa; 349.1 ± 601.8 in. m−2; 85.1 ± 195.6 mg C m−2) compared to temperate analogous (2–48 taxa; 492−83,189 8 in. m−2; 0.13−201.5 mg m−2). We conclude the early onset and long-lasting hypolimnetic anoxia restrict the benthic macroinvertebrate community radiation and diversification in tropical, oligotrophic, warm monomictic lakes.  相似文献   

8.
Abstract

The Seddon speed formula expressed mathematically as c = dQ/dA (or alternatively, as c = (1 + m)uo; where Q is the discharge, A is the area of cross-section, c is the wave speed, uo is the normal flow velocity, and m is a dimensionless parameter) is revisited in the context of elasticity and thermodynamics. Its link with the linearized solution of St Venant's equations for wave celerity, which does not appear to have been reported in the hydrological literature, is established. The rating exponent m is shown to be equivalent to the dimensionless relative celerity and is found to be the ratio of two specific heats, viz. cp and cv which are the specific heats at constant pressure and volume, respectively. The use of the parameter m as a complex variable helps describe shallow wave characteristics, the damping capacity of a wave, and the mechanism of occurrence of the hysteretic phenomenon. The damping capacity is found to describe the magnitude of wave subsidence, whereas the hysteresis also describes the speed of subsidence.  相似文献   

9.
《国际泥沙研究》2020,35(2):134-145
Understanding diffusion and solute transport,is regarded as a main activity in environmental management,sustainable development and sedimentation processes because of their role in diffusion of contaminants.The current paper presents an experimental study which was done in a parabolic channel with permeable and impermeable bed conditions in order to estimate the transverse mixing coefficient(TMC) and the maximum solute mixing length(SML) for different channel bed roughness coefficients and discharges.The cross section of the channel was 0.5 m wide and 0.3 m deep with a parabolic shape(i.e.similar to furrow irrigation).Three levels of bed roughness coefficient of 0.02,0.04,and 0.06,and three discharges of 5,10,and 15 L/s were considered.Bed infiltration channel was applied at a low level and medium level as well as a case without infiltration.In the current experiments,sodium chloride was used as a soluble tracer and was injected into the water at mid depth in the upstream cross section.The tracer concentration profile in the water and velocity profile were measured at eight cross sections in the channel.The results showed that the values of SML ranged between 20 and 46 m in impermeable and permeable beds channel beds respectively.The assessment of usual discharge values,infiltration,and roughness coefficient of a furrow(agricultural field) indicated that the SML of the furrows were less than20 m.In the current research,the average dimensionless mixing coefficient was found to be 0.17 in the nonrectangular channel.Eventually,equations were developed to explain the TMC and SML in a permeable parabolic channel that could be beneficial in prediction of fertilizer transport in furrow irrigatio n.  相似文献   

10.
Brush Creek drains a 76·1 km2 watershed within urban Kansas City, Missouri and eastern Kansas. A concrete-lined reach trending 6·1 km through the Plaza District of Kansas City, Missouri has been the focus for several major floods over the past ten years. Channel geometry, slope, and floodwater elevations were determined in the field for segments of the concrete-lined section of Brush Creek for a flood event that occurred on September 18, 1986. Discharge was computed by indirect methods and compared to a value determined from a rating curve established by the Water Resources Division of the U.S.G.S. Boundary shear stress, unit stream power, and average velocity were also computed in order to establish a quantitative relationship between sediment distribution, volume, and size fractions; and flow dynamics operating throughout the channel during this event. Boundary shear stress ranged from 91-96 Nm?2, stream power was 528-557 Wm?2, while average velocity was 5-8 ms?1. These values were sufficient to displace concrete slabs as large as 5 m long by 4·6 m wide by 0·23 m thick weighing an estimated 12 245 kg. As the channel was sediment free and unsecured prior to the flood, the distribution of deposits and subsequent channel scour provide valuable evidence for potentially hazardous sections of this urban stream.  相似文献   

11.
We present the first attempt to explain slow earthquakes as cascading thermal-mechanical instabilities. To attain this goal we investigate brittle-ductile coupled thermal-mechanical simulation on vastly different time scales. The largest scale model consists of a cross section of a randomly perturbed elasto-visco-plastic continental lithosphere on the order of 100 × 100 km scale with no other initial structures. The smallest scale model investigates a km-scale subsection of the large model and has a local resolution of 40 × 40 m. The model is subject to a constant extension velocity applied on either side. We assume a free top surface and with a zero tangential stress along the other boundaries. Extension is driven by velocity boundary conditions of 1 cm/a applied on either side of the model. This is the simplest boundary condition, and makes it an ideal starting point for understanding the behavior of a natural system with multiscale brittle-ductile coupling. Localization feedback is observed as faulting in the brittle upper crust and ductile shearing in an elasto-viscoplastic lower crust. In this process brittle faulting may rupture at seismogenic rates, e.g., at 102–103 ms?1, whereas viscous shear zones propagate at much slower rates, up to 3 × 10?9 ms?1. This sharp contrast in the strain rates leads to complex short-time-scale interactions at the brittle-ductile transition. We exploit the multiscale capabilities from our new simulations for understanding the underlying thermo-mechanics, spanning vastly different, time- and length-scales.  相似文献   

12.
UAVs-SfM (unmanned aerial vehicles-structure-from-motion) systems can generate high-resolution three-dimensional (3D) topographic models of aeolian landforms. To explore the optimization of UAVs-SfM for use in aeolian landform morphodynamics, this study tested flight parameters for two contrasting aeolian landform areas (free dune and blowout) to assess the 3D reconstruction accuracy of the UAV survey compared with field point measurements using differential RTK-GPS (real-time kinematic-global positioning system). The results reveal the optimum UAVs-SfM flight set-up at the free-dune site was: flying height = 74 m, camera tilt angle = −90°, photograph overlap ratio = 85%/70% (heading/sideways). The horizontal/vertical location error was around 0.028–0.055 m and 0.053–0.069 m, respectively, and a point cloud density of 463/m3 was found to generate a clear texture using these flying parameters. For the < 20 m deep blowout the optimum set-up with highest accuracy and the lowest cliff texture distortion was: flying height = 74 m combined camera tilt angle = −90° and −60°, photograph overlap ratio = 85%/70% (heading/sideways), and an evenly distributed GCPs (ground control points) density of 42/km2 using these flying parameters. When the depth of the blowouts exceeded 40 m, the optimum flight/survey parameters changed slightly to account for more challenging cliff texture generation: flying height = 80 m (with −90° and −60°combined camera tilt angle), GCPs density = 63/km2 to generate horizontal and vertical location error of 0.024 m and 0.050 m, respectively, and point cloud density of 2597.11/m3. The main external factors that affect the successful 3D reconstruction of aeolian landforms using UAVs-SfM are the weather conditions, manipulation errors, and instrument system errors. The UAVs-SfM topographic monitoring results demonstrate that UAVs provide a viable and robust means for aeolian landform morphodynamics monitoring. Importantly, the rapid and high precision 3D reconstruction processes were significantly advanced using the optimal flight parameters reported here. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The Amazon Macrotidal Mangrove Coast (AMMC) is a large (~7500 km2) contiguous mangrove fringe eastwards from the Amazon River mouth. It encompasses dozens of interconnected bays intercalated with mangrove peninsulas. Mud accumulates on the mangrove flats, whereas the bed of the bays and channels is generally sandy. In this study we investigated the circulation, sediment transport and deposition in a central site at one of these mangrove peninsulas. The study was undertaken during the dry period, when there is no influence of the Amazon River plume and minimum local freshwater inflow. Current and suspended-sediment concentration were monitored in a feeder channel on the mangrove flat along a ~1000 m section oriented along the peninsula axis. Sediment deposition was also measured on the flat. Our results show there was a strong exchange between the neighboring bays. Channel currents were flood dominant, reaching up to >1 m s−1, with residual water and sediment transport westwards. Suspended sediment concentration (SSC) in the channel was directly related to velocity magnitude, ranging between 50 and 350 mg L−1. The flat was flooded in a way that indicated the tidal wave evolves westwards, nearly parallel to the AMMC shoreline. Currents on the flats were much slower than those in the channel and showed slight ebb dominance. However, SSC was higher during the flood than ebb, clearly indicating settling during the current deceleration and limited erosion during the following ebb–flow acceleration. The net sediment transport across the section was 60 tons westwards for the period of the experiment (~4 days). The mean deposition rate was 0.006 kg m−2 s−1 (or 1.4 kg m−2 per tide), which was higher than rates from other reported assessments in mangroves. The set of results indicate very large internal sediment reworking in the AMMC. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
This paper studies relations between bankfull discharge,lateral cross section variation and the incoming flow and sediment condition in the Lower Yellow River using measured data from 1950 to 2003.Since 1950 the bankfull discharge has obviously decreased and the ratio of channel width to flow depth has increased.The critical annual average incoming sediment coefficient(defined as the ratio of sediment concentration to discharge) and discharge at the Huayuankou station are approximately 0.012 and 1,850 m3s-1,respectively,for no accumulative deposition occurring in the reach from Huayuankou to Lijin.On this basis,a mathematical model is used to study the scale of the main channel in the Lower Yellow River and its corresponding bankfull discharge under possible incoming flow and sediment conditions in the near future.The main factors influencing the scale of the main channel are analyzed,and measures to shape and maintain a medium-sized channel are discussed.The results show the effect of various water and sediment combinations released from the Xiaolangdi Reservoir on the shaping of the main channel and suggest that under recent incoming flow and sediment conditions,it is possible to shape and maintain a medium-sized channel with a bankfull discharge of approximate 4,000 m3 s-1.  相似文献   

17.
Large rivers have been previously shown to be vertically heterogeneous in terms of suspended particulate matter (SPM) concentration, as a result of sorting of suspended solids. Therefore, the spatial distribution of suspended sediments within the river section has to be known to assess the riverine sedimentary flux. Numerous studies have focused on the vertical distribution of SPM in a river channel from a theoretical or experimental perspective, but only a few were conducted so far on very large rivers. Moreover, a technique for the prediction of depth‐integrated suspended sediment fluxes in very large rivers based on sediment transport dynamics has not yet been proposed. We sampled river water along depth following several vertical profiles, at four locations on the Amazon River and its main tributaries and at two distinct water stages. Depending on the vertical profile, a one‐ to fivefold increase in SPM concentration is observed from river channel surface to bottom, which has a significant impact on the ‘depth‐averaged’ SPM concentration. For each cross section, a so‐called Rouse profile quantitatively accounts for the trend of SPM concentration increase with depth, and a representative Rouse number can be measured for each cross section. However, the prediction of this Rouse number would require the knowledge of the settling velocity of particles, which is dependent on the state of aggregation affecting particles within the river. We demonstrate that in the Amazon River, particle aggregation significantly influences the Rouse number and renders its determination impossible from grain‐size distribution data obtained in the lab. However, in each cross section, the Rouse profile obtained from the fit of the data can serve as a basis to model, at first order, the SPM concentration at any position in the river cross section. This approach, combined with acoustic Doppler current profiler (ADCP) water velocity transects, allows us to accurately estimate the depth‐integrated instantaneous sediment flux. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   

19.
Velocity measurements carried out by an acoustic doppler velocimeter (ADV) in a rectangular laboratory ?ume having a gravel bed are presented. The velocity pro?les are measured in six verticals of the channel cross‐section having an increasing distance (from 4 to 38·5 cm) from the ?ume wall. The experimental runs are carried out for ?ve different bed arrangements, characterized by different concentrations of coarser elements, and for the two conditions of small‐ and large‐scale roughness. For both hydraulic conditions, the velocity measurements are ?rst used to test the applicability of the Dean pro?le and of the logarithmic pro?le corrected by a divergence function proposed in this paper. Then, for each value of the depth sediment ratio h/d84, the non‐dimensional friction factor parameter is calculated by integration of the measured velocity distributions in the different verticals of the cross‐section. Finally a semi‐logarithmic ?ow resistance equation is empirically deduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes and analyses a hillslope–channel slope failure event that occurred at Wet Swine Gill, Lake District, northern England. This comprised a hillslope slide (180 m3, c. 203 ± 36 t), which coupled with the adjacent stream, resulting in a channelized debris flow and fluvial flood. The timing of the event is constrained between January and March 2002. The hillslope failure occurred in response to a rainfall/snowmelt trigger, on ground recently disturbed by a heather moorland fire and modified by artificial drainage. Slide and flow dynamics are estimated using reconstructed velocity and discharge values along the sediment transfer path. There is a rapid downstream reduction in both maximum velocity, from 9·8 to 1·3 m s?1; and maximum discharge, ranging from 33·5 to 2·4 m3 s?1. A volumetric sediment budget quantified a high degree of coupling between the hillslope and immediate channel (~92%: 167 m3), but virtually all of the sediment was retained in the first‐order tributary channel. Approximately 44% (81 m3) of the slide volume was retained in the run‐up deposit, and termination of the debris flow prior to the main river meant that the remainder did not discharge into the fluvial system downstream. These results suggest poor transmission of sediment to the main river at the time of the event, but importantly an increase in available material for post‐event sediment transfer processes within the small upland tributary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号