首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
In this study, we examine the variations in rare earth elements (REE) from the Lower Kittanning coal bed of eastern Ohio and western Pennsylvania, USA, in an attempt to understand the factors that control mineral matter deposition and modification in coal, and to evaluate possible REE mixed exposure hazards facing underground mine workers. The results of this study suggest that the Lower Kittanning coal mineral matter is derived primarily from a clastic source similar to that of the shale overburden. While highly charged cations like silicon, aluminum, and titanium remained relatively immobile within the coal mineral matter, iron (primarily as pyrite) was added from nonclastic sources, either during deposition of the coal mire vegetation or subsequent to burial. Other mobile cations (e.g., alkali and alkaline earth elements) appear to have been added to and/or leached from the originally deposited clastic mineral matter. Most of the sulfur in the Lower Kittanning coal bed is bound as FeS2 in the mineral matter, but a majority of samples contain a small excess of S that is most likely organically bound.In general, the total rare earth element content (TREE) in coal ash is greater than that in the shale overburden. If the primary source of mineral matter is the same as that for the overlying shale, then REE must have been enriched in the coal mineral matter subsequent to deposition. The total rare earth element content of Lower Kittanning coals correlates strongly with Si concentration ([TREE]≈0.0024 [Si]), which provides a threshold for evaluating possible mixed exposure health effects. Chondrite-normalized REE patterns reveal a shale-like light rare earth element (LREE) enrichment for the coal, similar to that of the shale overburden, again suggesting a primarily clastic REE source. However, when normalized to the shale overburden, most of the coal ash samples display a small but distinct heavy rare earth element (HREE) enrichment. We surmise that the HREE were added and/or preferentially retained during epigenesis, possibly associated with groundwater flow through the coal unit, but not necessarily in close association with the addition of iron. At least some of the “excess” HREE could be organically bound within the Lower Kittanning coal.  相似文献   

2.
鄂尔多斯盆地北缘延安组2号煤层稀土元素的异常原因一直存在着争议,以2号煤发育较完整的榆林大海则煤矿为例,运用电感耦合等离子质谱(ICP-MS)、扫描电子显微镜(SEM)等方法,分析煤及夹矸中稀土元素(REE)含量及其矿物学特征,并揭示稀土元素异常原因。结果显示:煤中总稀土元素(∑REE)含量为3.71~46.21 μg/g,轻稀土元素(LREE,La-Eu)比重稀土元素(HREE,Gd-Lu)更富集;稀土元素标准化配分模式图显示少数样品为Eu正异常;稀土元素含量较高的样品和拥有Eu正异常的样品主要分布在与夹矸距离较近的煤层中,表明煤中稀土元素分布受到了夹矸的影响;在夹矸中发现很多晶型较好的锆石、磷灰石、透长石及锐钛矿,这些矿物是在聚煤过程中接受火山物质的直接证据。综合认为,鄂尔多斯盆地延安组2号煤沉积期,盆地周缘存在一次火山活动,火山灰降落覆盖在泥炭沼泽之上,影响了聚煤作用,致使煤中稀土元素分布异常。研究结果解释了鄂尔多斯盆地北缘的煤中稀土元素异常原因,为研究区煤的加工利用方式提供参考。   相似文献   

3.
The Shengli River-Changshe Mountain oil shale zone, located in the North Qiangtang depression, northern Tibet plateau, represents a potentially large marine oil shale resource in China. Twenty-eight samples including oil shale, micritic limestone and marl were collected from the Shengli River area to determine the contents and distribution patterns of rare earth elements (REEs) in marine oil shale. Oil shale samples from the Shengli River area have high ash yield (61.86–67.48%) and TOC content (8.02–13.67%) with low total sulfur (St,d) content (0.76–1.39%) and intermediate shale oil content (3.60–16.30%). The total rare earth element (ΣREE) content in oil shale samples is notably depleted (46.79–67.90 μg/g), approximately one third of the mean value of the North American Shale Composite (NASC), and lower than that of world-wide black shales and Chinese coals, but higher than that of world-wide coals and micritic limestone samples (29.21 μg/g) from the Shengli River area. The oil shale samples from the Shengli River area exhibit shale-like Chondrite or NASC-normalized REE patterns similar to those of micritic limestone and marl samples from this area, indicating that REEs of these different lithological samples may have been derived from a similar terrigenous source.REE contents of oil shale samples are highly positive correlated with ash yield and show a positive correlation with Fe and a weakly positive correlation with organic sulfur, and the vertical variations of REEs mainly follow those of Si, Al, K and Ti. All these facts indicate that the REE contents in oil shale seams are mainly controlled by clay minerals and, to a lesser extent, by pyrite, as well as partly associated with oil shale organic constituents. Rare earth elements in the Shengli River oil shale have originated from two sources: a felsic volcanic rock source and a clastic or/and limestone source.  相似文献   

4.
辽宁北票地区煤中微量元素研究   总被引:4,自引:1,他引:4  
对辽宁北票地区煤中微量元素进行了研究 ,将研究区煤中微量元素的平均质量分数与世界范围煤的微量元素的平均质量分数进行比较 ,发现北票煤中的Cr、Co、Ni、As、Sr、Y、Zr、Ba、Ta、Sc具有较高的富集 ,而Sn、U具有较低的富集 ,这种差异可能主要与聚煤区域的地球化学背景有关。计算了微量元素之间的相关系数 ,得出北票地区煤中稀土元素总量较世界范围稀土元素总量的平均值偏高 ,且煤中稀土元素分布模式十分相似 ,表明在成煤期间陆源物质供应相对稳定。煤中矿物主要为高岭石、石英及方解石及少量的伊利石 ,并对其中的地质成因进行了初步解释。  相似文献   

5.
《Applied Geochemistry》2001,16(7-8):911-919
A total of 48 samples, feed (run-of-mine) coals and their combustion residues (fly ash and bottom ash) were systematically collected twice a week over a 4 week period (June 1998) from two boiler units (I and II) of the Cayirhan power plant (630 MW) that burns zeolite-bearing coals of late Miocene age. The feed coals are high in moisture (22.8% as-received) content and ash (44.9%) yield and total S content (5.1%), and low in calorific value (2995 kcal/kg). The mineralogy of the feed coals contains unusually high contents of the zeolites (clinoptilolite/heulandite and analcime), which are distributed within the organic matter of coal. Other minerals determined are gypsum, quartz, feldspar, pyrite, dolomite, calcite, cristobalite and clays. Common minerals in the crystalline phase of the combustion residues are anhydrite, feldspar, quartz, hematite, lime and Ca–Mg silicate. Minor and trace amounts of magnetite, cristobalite, maghemite, gehlenite, calcite and clinoptilolite/heulandite are also present in the combustion residues. Trace element contents of the feed coals, except for W, fall within the estimated range of values for most world coals; however, the mean values of Mn, Ta, Th, U and Zr are near maximum values of most world coals. Elements such as As, Bi, Ge, Mo, Pb, Tl, W and Zn are enriched more in the fly ash compared to the bottom ash.  相似文献   

6.
The coal of the Miocene Bukit Asam deposit in south Sumatra is mostly sub-bituminous in rank, consistent with regional trends due to burial processes. However, effects associated with Plio–Pleistocene igneous intrusions have produced coal with vitrinite reflectance up to at least 4.17% (anthracite) in different parts of the deposit. The un-metamorphosed to slightly metamorphosed coals, with Rvmax values of 0.45–0.65%, contain a mineral assemblage made up almost entirely of well-ordered kaolinite and quartz. The more strongly heat-affected coals, with Rvmax values of more than 1.0%, are dominated by irregularly and regularly interstratified illite/smectite, poorly crystallized kaolinite and paragonite (Na mica), with chlorite in some of the anthracite materials. Kaolinite is abundant in the partings of the lower-rank coals, but is absent from the partings in the higher-rank areas, even at similar horizons in the same coal seam. Regularly interstratified illite/smectite, which is totally absent from the partings in the lower-rank coals, dominates the mineralogy in the partings associated with the higher-rank coal beds. A number of reactions involving the alteration of silicate minerals appear to have occurred in both the coal and the associated non-coal lithologies during the thermal metamorphism generated by the intrusions. The most prominent involve the disappearance of kaolinite, the appearance of irregularly interstratified illite/smectite, and the formation of regular I/S, paragonite and chlorite. Although regular I/S is identified in all of the non-coal partings associated with the higher-rank coals, illite/smectite with an ordered structure is only recognised in the coal samples collected from near the bases of the seams. The I/S in the coal samples adjacent to the floor of the highest rank seam also appears to have a greater proportion of illitic components. The availability of sodium and other non-mineral inorganic elements in the original coal to interact with the kaolinite, under different thermal and geochemical conditions, appears to be the significant factor in the formation of these new minerals, and distinguishes the mineralogical changes at Bukit Asam from those developed more generally with rank increases due to burial, and from the effects of intrusions into coals that were already at higher rank levels.  相似文献   

7.
Boehmite-rich coal of Pennsylvanian age was discovered earlier at the Heidaigou Surface Mine, Jungar Coalfield, Inner Mongolia, China. This paper reports new results on 29 bench samples of the no. 6 coal from a drill core from the adjacent Haerwusu Surface Mine, and provides new insights into the origin of the minerals and elements present. The results show that the proportion of inertinite in the no. 6 coal is higher than in other Late Paleozoic coals in northern China. Based on mineral proportions (boehmite to kaolinite ratio) and major element concentrations in the coal benches of the drill core, the no. 6 coal may be divided into five sections (I to V). Major minerals in Sections I and V are kaolinite. Sections II and IV are mainly kaolinite with a trace of boehmite, and Section III is high in boehmite. The boehmite is derived from bauxite in the weathered surface (Benxi Formation) in the sediment-source region. The no. 6 coal is rich in Al2O3 (8.89%), TiO2 (0.47%), Li (116 μg/g), F (286 μg/g), Ga (18 μg/g), Se (6.1 μg/g), Sr (350 μg/g), Zr (268 μg/g), REEs (172 μg/g), Pb (30 μg/g), and Th (17 μg/g). The elements are classified into five associations by cluster analysis, i.e. Groups A, B, C, D, and E. Group A (ash–SiO2–Al2O3–Na2O–Li) and Group B (REE–Sc–In–Y–K2O–Rb–Zr–Hf–Cs–U–P2O5–Sr–Ba–Ge) are strongly correlated with ash yield and mainly have an inorganic affinity. The elements that are negatively or less strongly correlated with ash yield (with exceptions of Fe2O3, Be, V, and Ni) are grouped in the remaining three associations: Group C, Se–Pb–Hg–Th–TiO2–Bi–Nb–Ta–Cd–Sn; Group D, Co–Mo–Tl–Be–Ni–Sb–MgO–Re–Ga–W–Zn–V–Cr–F–Cu; and Group E, S–As–CaO–MnO–Fe2O3. Aluminum is mainly distributed in boehmite, followed by kaolinite. The high correlation coefficients of the Li–ash, Li–Al2O3, and Li–SiO2 pairs indicate that Li is related to the aluminosilicates in the coal. The boehmite-rich coal is high in gallium and F, which occur in boehmite and the organic matter. Selenium and Pb are mainly in epigenetic clausthalite fillings in fractures. The abundant rare earth elements in the coal benches were supplied from two sources: the bauxite on the weathered surface of the Benxi Formation and from adjacent partings by groundwater leaching during diagenesis. The light rare earth elements (LREEs) are more easily leached from the partings and incorporated into the organic matter than the heavy REEs, leading to a higher ratio of LREEs to HREEs in the coal benches than in the overlying partings.  相似文献   

8.
平庄煤田煤中稀土元素地球化学特征   总被引:11,自引:0,他引:11  
结合煤田地质特征,对不同矿区、不同煤组的煤进行了稀土元素的含量测试,得出了煤的稀土元素含量变化规律及分布模式,讨论了稀土元素的主要赋存状态、来源、含量异常以及与成煤作用的关系。   相似文献   

9.
吉林省桦甸油页岩中稀土元素和微量元素的研究   总被引:5,自引:0,他引:5  
对桦甸油页岩及其灰渣的矿物成分、主量元素、稀土元素和微量元素含量进行测定。结果表明:油页岩中稀土元素含量低于北美页岩(NASC)中的平均含量,REE球粒陨石标准化的分布模式曲线表现为负斜率,(La/Yb)N的平均值大于1,属于轻稀土富集型;REE北美页岩标准化的分布模式曲线较平缓,(La/Yb)S的平均值接近于1,轻重稀土分馏不明显。与球粒陨石和北美页岩相比,Eu有较严重的正异常。油页岩中的微量元素与北美页岩和地壳的平均值相比较,Sb、Nb、Cs、Zn、Bi、W等元素具有较高的富集度。油页岩灰渣中稀土元素和微量元素富集度均高于油页岩。  相似文献   

10.
运用电感耦合等离子质谱(ICP-MS)、X射线荧光光谱(XRF)、离子选择电极(ISE)、显微镜光度计和煤化学等方法,对山东济宁矿区的高硫煤(太原组16号煤层)与低硫煤(山西组3上煤层)剖面的煤岩、煤质和煤地球化学特征进行研究。高硫煤中微量元素在垂向上呈现显著的变化规律:(1)Sr含量从煤层底板到顶板呈增高趋势,而Ba含量则相反;因而Sr/Ba比值从下向上呈逐渐变大趋势(0.04~47.7);(2)Th/U比值从下向上也呈逐渐变大趋势(0.2~37.1);(3)As含量在煤层顶板石灰岩(26.1μg/g)、透镜状黄铁矿夹层(14.7~19.3μg/g)中较高;(4)V、Cr、Co、Ni、Cu、Pb、Zn等元素在煤层底部和顶部分层中含量较高,而在煤层中部分层中含量较低;(5)Nb、Ta、Zr、Hf、Ga等元素从煤层的底部到顶部呈逐渐降低趋势;(6)煤中稀土元素总量(REE),除透镜状黄铁矿夹层(第2、4、11分层)外,其它分层(第1、3、5、6、7、8、9、10分层)显示从上往下逐渐增高之规律性。低硫煤中微量元素的分布和垂向变化与高硫煤明显不同:As含量在14个煤分层中都较低(1.03~3.37μg/g),Sr/Ba比值从下向上变化不大(0.4~2.2),各个煤分层中稀土元素总量(REE)呈现随灰份含量增高而增高的变化趋势,低硫煤与高硫煤的稀土元素分布模式差别很大。上述研究结果表明济宁矿区高硫煤与低硫煤在地球化学特征上的差别,反映了上石炭统太原组与下二叠统山西组沉积环境和聚煤条件的差别,具有指相意义;太原组16号煤层中富集的硫及有害微量元素,对环境具有潜在危害。  相似文献   

11.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

12.
The Cr and Ni contents are high in the Eocene lignite of the Shenbei coalfield, which is a small intracontinental basin located in Liaoning Province, China. In this paper, we studied the distribution, origin and occurrence of Cr, Ni and other hazardous trace elements in the Shenbei lignite on the basis of coal petrology, and geochemistry of the lignite and combustion products. The following conclusions on the Shenbei lignite can be drawn: (1) The dominant maceral group in the Shenbei coal is huminite (humodetrinite), accounting for 96%–99% of the total maceral. Inertinite content is less than 1%. Liptinite content (sporinite and cutinite) is 0.2–1.6%. Common minerals in the Shenbei lignite include clay minerals (kaolinite), pyrite and quartz, and calcite and siderite. Chromite is not present in the lignite. (2) Potentially hazardous trace elements such as Co (22 μg/g), Cr (79 μg/g), Cu (63 μg/g), Zn (93 μg/g), V (88 μg/g) and Ni (75 μg/g) are strongly enriched in the Shenbei lignite compared with average concentration of trace elements in the Chinese coal and worldwide lignite. These elements are mainly associated with fulvic acid (FA) and/or coal organic macromolecular compounds in most of the studied lignite samples, indicating an organic association and enrichment of these elements in the Shenbei lignite. (3) Unusually high trace elements contents in the Shenbei lignite are derived mainly from the olivine basalt (country rock of coal basin) that consists of 52.7% plagioclase, 17.8% pyroxene, 14% olivine and 15.5% Ti–Fe oxide minerals. These olivine basalts have higher Cr, Ni, Pb and Zn contents than other types of rock and worldwide basalts do. (4) Fly ash of the Shenbei lignite, with 90% 1–50 μm amorphous particles and 8% 1–10 μm cenosphere, has high contents of Zn (23,707 μg/g), Be (12 μg/g), Sr (1574 μg/g), Pb (486 μg/g) and Cr (349 μg/g). In particular, the ferruginous micro-cenoshperes contain 1–12.79% Zn. Fine bottom ash (<0.031mm) of the Shenbei lignite has higher contents for most of the elements with the exception of Mo, Sn and Zn. Therefore, the potentially environmental and health impact of the fly ash and fine bottom ash should constitute a major concern.  相似文献   

13.
Environmental legislation has had significant impact on coal utilization, especially coal combustion for power generation, in limiting emissions of potentially hazardous materials to the environment. For the most part, such emissions derive from the inorganic constituents in coal. However, as such legislation becomes ever more encompassing, it has increased the need to understand better the behavior of the inorganic species in coal processing to ensure, in part, that such legislation is not unduly burdensome. Consequently, it has led to significant development of new models for the behavior of inorganics in coal combustion and a complementary enhancement of many analytical methods for determining inorganics in coal.In this paper, analytical methods for inorganics in coal are reviewed on three fronts: (i) methods for determining elemental concentrations; (ii) methods for determining the mineralogy of coals; and (iii) methods for determining modes of occurrence (speciation) of trace elements in coal. The concept of association with respect to mineral–maceral and mineral–mineral occurrences is also discussed. Where possible, comparison of different analysis methods has been made by reference to data on well-characterized suites of coals, such as the Argonne premium coal samples.Incremental enhancements will continue to be made in analytical methods for elemental concentrations; however, major improvements are needed in the other two areas. There is a great need to verify and corroborate by direct speciation methods, the many inferences made by indirect methods regarding trace element speciation. Also, improvements in the measurement of mineral association and its integration into the coal mineral analysis by means of the computer-controlled scanning electron microscopy (CCSEM) would be a significant advance. Accurate determinations of both association and coal mineralogy would lead to significant and much-needed refinements of models for the behavior of inorganics in both coal cleaning processes and coal combustion.  相似文献   

14.
Rare earth element (REE) concentrations were determined in acid mine drainage (AMD), bedrock, pyrite, and coal samples from the Sitai coal mine and the Malan coal mine in Shanxi province, China. The AMD displayed high REE concentrations with typical convex shale-normalized patterns. The REE concentrations in the bedrock samples are one order of magnitude higher than those found in pyrite and coal samples. The high REE concentrations in AMD most likely come from the acidic solution leached out REE in bedrock. Results from laboratory and field experiments show that pH is the most important factor controlling the fractionation of REE; but Fe, Al, and Mn colloids and secondary minerals also affects their fractionation. As the pH increased from 4 to 6, the concentrations of total dissolved REE decreased from 520 to 0.875???g?L?1. Fe and Al in AMD has less influence on the fractionation of dissolved REE than low concentrations of Mn. HREE were preferentially removed by secondary minerals and colloids, followed by MREE. Rare earth element??s speciation modeling indicates that sulfate complexes (LnSO4 + and Ln(SO4) 2 ? , 79?C91%) and free-metal species (Ln3+, 8.8?C21%) are the dominant REE species in the AMD, but the REE-sulfate complexation could not explain the MREE-enriched patterns.  相似文献   

15.
Many Neo-Tethyan ophiolitic bodies are well exposed as thrust-slices in Central Anatolia and are predominantly represented by massive hornblende gabbros, most of which are cut by Supra Subduction Zone (SSZ) plagiogranites. The allochthonous gabbros are distinct from their autochthonous counterparts, with their mineralogy including both igneous hornblende, relict diopside rimmed by replacement hornblende and their chemical composition corresponding mostly to gabbro rather than diorite.The results of major and trace element analyses of forty-two samples, and REE analyses of nine samples, indicate that the hornblende gabbros are SSZ-type and formed from a wet magma by high-degree partial melting of peridotite possibly coupled with contamination by predominantly neighbouring-slab derived fluids within an intra-oceanic back-arc basin. The mafic magmas then underwent high-level fractional crystallization involving titaniferous magnetite, diopside, tschermakite and possibly olivine. Emplacement was followed by extensive ocean–floor metamorphism, which has induced crystallization (or recrystallization) of chlorite, biotite, amphiboles and mobilisation of most of the major elements such as alkali and alkali earth elements, and some LREE.  相似文献   

16.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

17.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

18.
The clay fractions of saprolites from granites, basalt, and schists in Egypt were subjected to mineralogical and geochemical investigations to examine the effect of source rock on the composition of the saprolites and the possibilities of these saprolites as a source of the nearby sedimentary kaolin deposits. The clay fractions of the studied saprolites show mineralogical and geochemical variations. Saprolites from the granites consist of kaolinite, while saprolites from the basalts are composed entirely of smectite. Schists-derived saprolites are composed of kaolinite in some cases and of a mixture of kaolinite, illite, and chlorite in the other. Saprolite from the basalt is characterized by relatively higher contents of TiO2 and Ni compared to the saprolites from granites. Saprolites from granites have higher contents of Ba, Li, Pb, Sr, Th, Y, and Zr compared to those of the saprolites from the basalts and schists. Saprolites from different schists show variations in the distributions of many constituents, such as TiO2, Cr, Ni, Ba, Y, and Zr. Although chondrite-normalized rare earth elements (REE) patterns are characterized by relative enrichments in the light rare earth elements (LREE) compared to the heavy rare earth elements (HREE) in all saprolites, granitic saprolites show negative Eu anomalies, while saprolite from basalt has no Eu anomaly. REE patterns of the saprolites from schists exhibit slight positive Ce anomalies and slight to moderate negative Eu anomalies. Weathering of saprolites from the basalt and metasediments is classified as the bisiallitization type, while weathering of saprolite from the granite is allitization type. Saprolites from schists vary from the bisiallitization (Aswan and Abu Natash) and allitization (Khaboba) types. Saprolites from the Khaboba schist can be considered the possible source of the Carboniferous kaolin deposits in the Hasber and Khaboba areas of Sinai, based on the similarity in the mineralogy and geochemistry of major, trace, and REE between the saprolites and the deposits. On the other hand, Carboniferous sedimentary kaolin deposits in the Abu Natash area, as well as the Cretaceous kaolin deposits in all areas of Sinai, might have been derived from the nearby schist saprolites, based on the similarity in the mineralogy and geochemistry between the saprolites and the kaolin deposits. Granites from the Arabian-Nubian Shield (ANS) and East Sahara Craton (ESC) are the possible sources of the pisolitic and plastic kaolin deposits in the Kalabsha area (Aswan), as indicated by the similarity in the mineralogy and geochemistry of the granitic saprolites and the kaolin deposits.  相似文献   

19.
This is the fourth installment in a series of papers on the Asturian (Westphalian D) disrupted mire margins, termed the “ragged edge” in previous papers, and limestone distributions in the Herrin–Baker coal interval in the Western Kentucky extension of the Illinois Basin. New data, indicating in-situ peat development and marine influence, collected from the first in-mine exposure of this interval are presented. Borehole data from the region are examined in the context of “ragged edge” exposures and a carbonate platform depositional model for this portion of the Illinois Basin is presented. This shows that deposition of the sequence was influenced both by the underlying sediments and by a marine transgression. The former influence is seen in variations in coal and limestone thickness over sandstone-filled channels versus over shale bayfill deposits. The latter is marked by the progressive upwards loss of coal benches (i.e., the bottom bench of both coals is the most extensive and the Herrin coal is more extensive than the overlying Paradise coal) and by marine partings in both coals. Further, the brecciated margins seen in both coal seams are similar to brecciated peats encountered along the Everglades margins of Southwest Florida. Overall coal distributions are similar to both those along the Everglades margins and those along a transect from the Belize coast to Ambergis Caye.  相似文献   

20.
Three vertical sections through the Zagrad deposit of Jurassic karst bauxite in central Montenegro have provided knowledge of the vertical distribution of major and some selected trace elements, including rare earth elements (REE). Variations in the mineralogy, particularly those hosting REE, have been studied. This has revealed the presence of authigenic mineral phases such as xenotime, mottramite and monazite (best proved using Raman microprobe analysis) as well as residual phases such as zircon, titanite and monazite. The mobility of the elements during bauxitization processes has been studied to show that the REE minerals ensure progressive concentration of these elements during removal of major elements through weathering. The similarity of normalized REE in the bauxite to the typical Post-Archean Australian Shales (PAAS) and Upper Continental Crust (UCC) profile, and the preserved Eu anomaly, are evidence that the bauxite was not derived from carbonates and represents alteration of shale, marly limestone and volcanogenic or proximal igneous sourced detritus that accumulated in the original karst landform. Mass change during bauxitization, using Ti as “index” element and compared to PAAS composition, revealed almost 100% depletion of Si and weak enrichment in Al. Deeper parts of the deposit with authigenic minerals exhibit very strong enrichment in all REE. The bauxite ores have high ΣREE contents (693.5–6953.4 ppm), especially ΣLREE contents (582.8–4882.9 ppm), while ΣHREE contents (106.6–2070.5 ppm) are much lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号