首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract A water injection experiment was carried out by the scientific drilling program named the 'Nojima Fault Zone Probe' during the two periods 9–13 February and 16–25 March 1997. The pumping pressure at the surface was approximately 4 MPa. The total amount of injected water was 258 m3. The injection was made between depths of 1480 m and 1670 m in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m borehole drilled into the Nojima Fault zone. A seismic observation network was deployed to monitor seismic activity related to the water injections. Seismicity suddenly increased in the region not far from the injection hole 4 or 5 days after the beginning of each water injection. These earthquakes were likely to be induced by the water injections. Most of the earthquakes had magnitudes ranging from −2 to +1. Numerous earthquakes occurred during the first injection, but only one could be reliably located and it was approximately 2 km north of the injection site. Between the two injection periods, earthquakes concentrated in the region approximately 1 km northwest of the injection site. During and after the second injection experiment, earthquakes were located approximately 1.5 km west of the injection site. Those earthquakes were located approximately 3 km or 4 km from the injection point and between 2 km and 4 km in depth. Values of intrinsic permeability of 10−14–10−15 m2 were estimated from the time lapse of the induced seismic activity. The coefficient of friction in the area where the induced earthquakes occurred was estimated to be less than 0.3.  相似文献   

2.
Abstract A multi-offset hydrophone vertical seismic profiling (VSP) experiment was done in a 747 m deep borehole at Nojima Hirabayashi, Hyogo prefecture, Japan. The borehole was drilled to penetrate the Nojima Fault, which was active in the 1995 Hyogo-ken Nanbu earthquake. The purpose of the hydrophone VSP is to detect subsurface permeable fractures and permeable zones and, in the present case, to estimate the permeability of the Nojima Fault. The analysis was based on a model by which tube waves are generated when incident P-waves compress the permeable fractures (or permeable zones) intersecting the borehole and a fluid in the fracture is injected into the borehole. Permeable fractures (or permeable zones) are detected at the depths of tube wave generation, and fracture permeability is calculated from the amplitude ratio of tube wave to incident P-wave. Several generations of tube waves were detected from the VSP sections. Distinct tube waves were generated at depths of the fault zone that are characterized by altered and deformed granodiorite with a fault gouge, suggesting that permeable fractures and permeable zones exist in the fault zone. Tube wave analysis shows that the permeability of the fault gouge from 624 m to 625 m is estimated to be approximately 2 × 10−12 m2.  相似文献   

3.
Abstract In order to make geophysical and geological investigations of the Nojima Fault on Awaji Island, Japan, three boreholes measuring 1800 m, 800 m and 500 m deep were drilled into the fault zone. The fault is one of the seismic source faults of the 1995 Hyogo-ken Nanbu earthquake of M 7.2. A new multicomponent borehole instrument was installed at the bottom of the 800 m borehole and continuous observations of crustal strain and tilt have been made using this instrument since May 1996. A high-pressure water injection experiment within the 1800 m borehole was done in February and March 1997 to study the geophysical response, behavior, permeability, and other aspects of the fault zone. The injection site was located approximately 140 m horizontally and 800 m vertically from the instrument. Associated with the water injection, contraction of approximately 0.7 × 10−7 str (almost parallel to the fault) and tilt of approximately 1 × 10-7 rad in the sense of upheaval toward the injection site were observed. In addition to these controlled experiments, the strainmeter and tiltmeter also recorded daily variations. We interpret strain and tilt changes to be related to groundwater discharge and increased ultra-micro seismicity induced by the injected water.  相似文献   

4.
Abstract Elemental and isotopic compositions of noble gases extracted from the bore hole water in Osaka plain, central Japan were examined. The water samples were collected from four shallow bore holes (180-450 m) and seven deep bore holes (600-1370 m) which have been used for an urban resort hot spring zone. The water temperatures of the deep bore holes were 22-50°C and that of the shallow bore holes, 13-23°C. The elemental abundance patterns show the progressive enrichment of the heavier noble gases compared with the atmospheric noble gas composition except for He, which is heavily enriched in deep bore hole water samples. 3He/4He ratios from the bore holes reaching the Ryoke granitic basement were higher than the atmospheric value (1.4 × 10−6), indicating a release of mantle He through the basement. The highest value of 8.2 × 10−6 is in the range of arc volcanism. On the other hand, the bore holes in sedimentary rocks overlying the basement release He enriched in radiogenic 4He, resulted in a low 3He/4He ratio of 0.5 × 10−6. 4He/20Ne and 40Ar/36Ar ratios indicate that the air contamination is generally larger in shallow bore holes than in deep ones from each site. The helium enriched in mantle He is compatible with the previous work which suggested up-rising magma in 'Kinki Spot', the area of Osaka and western Wakayama, in spite of no volcanic activity in the area. A model to explain an initiation of magma generation beneath this area is presented.  相似文献   

5.
Naotatsu  Shikazono 《Island Arc》1994,3(1):59-65
Abstract Chemical data on hydrothermally altered volcanic rocks from a green tuff belt in Japan indicate that the average rate of Mg removal from seawater due to seawater cycling through back-arc basins in the circum-Pacific region during the early to middle Miocene (25–15 Ma) is estimated to be 2.6±1 × 1013 g/year. This is similar to that through present-day mid-ocean ridges (2.4 × 1013 g/year). Hydrothermal fluxes of K, Ca and Si are calculated to be 4.2±1.6 × 1013 g/year, 4.3±1.7×1013 g/year and 1.0±0.4 × 1014 g/year, respectively. These calculated results indicate that the seawater/volcanic rocks interaction at subduction-related tectonic settings have to be taken into account in considering the geochemical mass balance of seawater over geologic time.  相似文献   

6.
Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch–Asano Fault is estimated to be 260–310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch–Asano Fault, it is estimated to total to 490–540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4–0.45 m/103 years for the past 1.2 million years.  相似文献   

7.
Abstract A loam section near Daisen volcano, South-west Japan, has been examined for low-field magnetic susceptibility (MS) and fine quartz accumulation rate. Fission track dating of tephra layers interbedded in the deposit shows that the loam age ranges from about 200 ka to the Present. The MS was measured for both bulk sample and the < 63 μm fine fraction. Fine quartz contents in the < 63 μm fraction were also determined using acid-alkali digestions and recalculated to derive fine quartz accumulation rate (Rqz). Grain size analysis was then carried out on the separated fine quartz. Low-field MS varies from low frequency magnetic suspectibility (χ(LF)) 5 to 100 (× 10−6 m3/kg) for bulk samples and from 1 to 30 for fine fractions. The fine fraction χ(LF) variation correlated with Chinese loess MS stratigraphy, which indicated changes in pedogenic enhancement of the MS and is reflected by summer monsoon intensity. The Rqz are high in cool climate stages, with volumes between 0.2 and 0.4 (× 10−2 kg/m2 per yr), whereas in warm stages the rate falls to about 0.1. These values compare well with those reported from the Hokkaido and Kanto areas, suggesting the fine quartz originates from tropospheric dust. The strong winter monsoons during glacial stages alternated with weak summer monsoons as a result of a southward shift of the jet stream. In interglacials, summer monsoons were stronger. Seasonal alternating monsoons appear to have operated in South-west Japan through the past 200 000 years.  相似文献   

8.
Abstract An 800 m borehole was drilled near the Nojima Fault, on which a strike–slip larger then 1 m occurred during the 1995 Hyogo-ken Nanbu earthquake ( M = 7.2). Crustal activity near the fault has been observed since May 1996 using a multicomponent instrument installed at the bottom of the borehole. Data of three components of strain, two components of tilt and temperature observed from May 1996 to December 1998 were analyzed. Long-term changes of strain and tilt show a north-east–south-west extension and southwards subsidence. As for the Earth tides and atmospheric effect, orientation of the principal axis of strain was mainly east-west and orientation of the maximum subsidence was mainly north-south. The observational data of strain had variations corresponding to a change in temperature at a depth of 800 m. The thermal expansion coefficient of the crust was calculated to be approximately 2.0 × 10−6/°K.  相似文献   

9.
汶川地震断层带结构及渗透率   总被引:11,自引:3,他引:8       下载免费PDF全文
对汶川地震断层带进行了跨断层的渗透率测量.结果显示汶川地震断层由低渗的核部(2.4×10-19~3.8×10-16m2)、高渗的破碎带(3.7×10-16~3.0×10-15m2)以及含裂隙原岩(6.0×10-18~4.3×10-13 m2)组成(有效压力40 MPa),其中新鲜断层泥具有最低的渗透率.断层泥和两侧原岩...  相似文献   

10.
Studies have shown that materials, such us polytetra-fluoroethylene (PTFE), rigid polyvinyl chloride (rigid PVC). flexible polyvinyl chloride (flexible PVC), stainless steel (SS). low-density polyethylene (LDPE), and high-density polyethylene (HDPE), have the potential to influence certain analyte concentrations in ground water samples. The effects of HDPE, LDPE, PTFE, rigid PVC, and SS on aqueous concentrations of nitrate-N, atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were evaluated in a field study A laboratory study was conducted to evaluate sorption of atrazine DEA, DIA, cyanazine, alachlor, metolachlor, and butachlor to PTFE, HDPE, and SS materials. Butachlor is rarely use in the United States, but was included because of its expected high sorptivity. No significant differences between HDPE, LDPE, PTFE, rigid PVC, and SS were determined for any of the analytes tested in the field study. In the laboratory study, sorption of DIA to PTFE and SS was significant at 2.6 × 10−5 and 4.1 × 10−5μg/m2 respectively. Sorption of DIAA to HDPE was not significantly > 0 sorption of all other compounds to HDPE, PTFE, and SS were also not significantly >0. Results of the two studies indicate that for these analytes (relatively polar or ionized compounds), representative ground water samples are not dependent on the materials used for multilevel sampler construction. When considering these compounds, it appears that the least expensive materials (HDPE, rigid PVC, and LDPE) are good choices for the construction of ground water monitoring wells.  相似文献   

11.
Geographical distribution of helium isotope ratios in northeastern Japan   总被引:1,自引:0,他引:1  
Keika  Horiguchi  Sadato  Ueki  Yuji  Sano  Naoto  Takahata  Akira  Hasegawa  George  Igarashi 《Island Arc》2010,19(1):60-70
In order to study the precise geographical distribution of helium isotope ratios in northeastern Japan and compare it with geophysical data, we collected 43 gas and water samples from hot and mineral springs in the region where the ratio had never been reported, and measured the 3He/4He and 4He/20Ne ratios of these samples. It was found that the 3He/4He ratios show clear contrasts between the forearc and the back-arc regions in the Tohoku district in northeastern Japan. In the forearc region, the ratios are smaller than 1 RA (1 RA = 1.4 × 10−6; RA means the 3He/4He ratio of the atmosphere). On the other hand, those along the volcanic front and in the back-arc region are apparently higher. Moreover, we found a variation in the 3He/4He ratios along the volcanic front. In Miyagi Prefecture (38–39°N), the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1 RA in and around the southern border between Iwate and Akita Prefectures (39–39.5°N). Comparing the distribution of helium isotope ratios to results of recent geophysical studies, we found that the features in geographical distribution of helium isotope ratios are similar to those of seismic low-velocity zone distributions and high Qp−1 distributions in the uppermost mantle. These observations strongly suggest that the helium isotope ratios reflect the distribution of melts in the uppermost mantle and are a useful tool for investigating the origin, behavior, and distribution of deep fluids and melts.  相似文献   

12.
The area surrounding the Colorado Department of Transportation Materials Testing Laboratory in Denver was the subject of intense investigation, involving the collection of thousands of ground water, soil-gas, and indoor air samples in order to investigate indoor air impacts associated with a subsurface release of chlorinated solvents. The preremediation portion of that data set is analyzed and reduced in this work to ground water–to-indoor air attenuation factors (αgw= the ratio of the measured indoor air concentration to the soil-gas concentration predicted to be in equilibrium with the local ground water concentration). The empirical αgw values for this site range from about 10−6 to 10−4 with an overall average of 3 × 10−5 (μg/L indoor air)/(μg/L soil gas). The analysis of this data set highlights the need for a thorough data review and data screening when using large data sets to derive empirical relationships between subsurface concentrations and indoor air. More specifically, it is necessary to identify those parts of the data that contain a strong vapor intrusion pathway signal, which generally will require concentrations well above reported detection levels combined with spatial or temporal correlation of subsurface and indoor concentrations.  相似文献   

13.
Abstract Long-term monitoring of temperature distribution in an active fault zone was carried out using the optical fiber temperature-sensing technique. An optical fiber cable was installed in a borehole drilled into the Nojima Fault in Awaji Island, south-west Japan, and the temperature profile to a depth of 1460 m had been measured for 2.5 years (July 1997–January 2000). Although the obtained temperature records showed small temporal variations due to drifts of the measurement system all along the cable, local temperature anomalies were detected at two depths. One at around 80 m seems to correspond to a fracture zone and may be attributed to groundwater flow in the fracture zone. This anomaly had been stable throughout the monitoring period, whereas the other anomaly at around 500 m was a transient one. The water level in the borehole could be estimated from the diurnal temperature variations in the uppermost part of the borehole and may provide information on the hydrological characteristics of the fault zone, which is connected to the borehole through perforations on the casing pipe. Except for these minor variations, the temperature profile had been very stable for 2.5 years. The conductive heat flow calculated from this profile and the thermal conductivity measured on core samples increases with depth, probably resulting from errors in thermal conductivity due to sampling problems and/or from advective heat transfer by regional groundwater flow. Assuming that the middle part of the borehole (less fractured granite layer) is least affected by these factors, heat flow at this site is estimated to be approximately 70 mW/m2.  相似文献   

14.
Satoshi  Hirano  Yoshiaki  Araki  Koji  Kameo  Hiroshi  Kitazato  Hideki  Wada 《Island Arc》2006,15(3):313-327
Abstract   A drilling and coring investigation of the Sagara oil field, central Honshu, Japan, was conducted to contribute to the understanding of hydrocarbon migration processes in a forearc basin. Core samples were analyzed to determine lithology, physical properties (specifically gas permeability) and the characteristics of oil occurrence. Gas permeability values greater than approximately 10−11 m2 constitute the basic precondition for any lithology to serve as a potential fluid conduit or reservoir in the Sagara oil field. Cores recovered from the 200.6-m-deep borehole were primarily composed of alternating siltstone, sandstone and conglomerate, all of which are correlated to the late Miocene Sagara Group. Both sandstone and conglomerate can be classified into two types, carbonate-cemented and poorly to non-cemented, based on matrix material characteristics. Oil stains are generally absent in the former lithology and more common in the latter. Variations in physical properties with respect to gas permeability values are directly related to the presence and character of carbonate cement, with higher permeabilities common in poorly to non-cemented rocks. The relationships between lithology, oil-staining, cementation and permeability indicate that cementation preceded oil infiltration and that cementation processes exerted significant control on the evolution of the reservoir.  相似文献   

15.
Laura B.  Hebert  Michael  Gurnis 《Island Arc》2010,19(1):134-150
Using two-dimensional dynamic models of the Northern Izu–Bonin (NIB) subduction zone, we show that a particular localized low-viscosity (ηLV =  3.3 × 1019 − 4.0 × 1020 Pa s), low-density (Δρ ∼ −10 kg/m3 relative to ambient mantle) geometry within the wedge is required to match surface observations of topography, gravity, and geoid anomalies. The hydration structure resulting in this low-viscosity, low-density geometry develops due to fluid release into the wedge within a depth interval from 150 to 350 km and is consistent with results from coupled geochemical and geodynamic modeling of the NIB subduction system and from previous uncoupled models of the wedge beneath the Japan arcs. The source of the fluids can be either subducting lithospheric serpentinite or stable hydrous phases in the wedge such as serpentine or chlorite. On the basis of this modeling, predictions can be made as to the specific low-viscosity geometries associated with geophysical surface observables for other subduction zones based on regional subduction parameters such as subducting slab age.  相似文献   

16.
Terrestrial heat flow at Hirabayashi on Awaji Island, south-west Japan   总被引:1,自引:0,他引:1  
Abstract Terrestrial heat flow at Hirabayashi in Awaji Island, south-west Japan, was investigated using the deep borehole penetrating through the Nojima Fault, which was activated during the 1995 Hyogo-ken Nanbu earthquake, by measuring the thermal conductivity of basement rocks. Using the temperature logging data, the value of terrestrial heat flow in Hirabayashi was found to be 56.6 ± 5.2 mW/m2. The relationship between cut-off depth of aftershocks of the Hyogo-ken Nanbu earthquake in Hirabayashi and terrestrial heat flow are discussed. The cut-off depth roughly corresponds to isotherms of 300°C.  相似文献   

17.
YASUO  IKEDA  KEISUKE  NAGAO  ROBERT J.  STERN  MAKOTO  YUASA & SALLY  NEWMAN 《Island Arc》1998,7(3):471-478
Noble gas concentrations and isotopic compositions have been measured in eight samples of pillow basalt glasses collected from seven different localities along 250 km of the Mariana Trough spreading and rifting axis. The samples have uniform and mid-ocean ridge basalt (MORB)-like 3He/4He values of 9–12 × 10–6 (6.4–8.6 times atmospheric) despite large variations in 4He. Concentrations of the noble gases Ne, Ar, Kr, and Xe show much smaller variations between samples, but larger variations in isotopic compositions of Ne, Ar, and Xe. Excess radiogenic 21Ne is observed in some samples. 40Ar/36Ar varies widely (atmospheric to 1880). Kr is atmospheric in composition for all samples. Some samples show a clear excess 129Xe, which is a well-known MORB signature. Isotopic compositions of the heavier noble gases (Ar, Kr, and Xe) in some samples, however, show more atmospheric components. These data reflect the interaction of a MORB-like magma with an atmospheric component such as seawater or of a depleted mantle source with a water-rich component that was probably derived from the subducting slab.  相似文献   

18.
Hydraulic conductivity values computed using the steady-state discharge and drawdown attained while low-flow sampling were evaluated to determine if they were equivalent to those determined from slug testing. Based on testing 12 wells, it was found that the results were statistically equivalent. Conductivity values computed using low-flow sampling parameters were also evaluated as to their reproducibility in actual practice by analyzing consultant data for three wells sampled over three quarterly monitoring periods by four field technicians. The results were found to be reproducible within about a factor of 2 or better. Since the method is based on only one pair of parameters, diligence is required in attaining steady state and in accurately measuring the flow rate and drawdown. Conductivity values computed using this approach can enhance the use of low-flow data gathered in water quality sampling, avoid the need for slug testing in a subsequent phase of investigation, and help reduce the cost of characterizing sites when multilevel samplers are used. Given the practical range of discharge in low-flow sampling, the method was found to be applicable at conductivity values somewhat greater than 10−6 cm/s. Given the typical accuracy of water level meters and pressure transducers and a maximum discharge of 1 L/min, as mandated by regulatory guidance, the method has a calculated upper conductivity limit in the range of 10−3 to 10−2 cm/s.  相似文献   

19.
Screening level models are now commonly used to estimate vapor intrusion for subsurface volatile organic compounds (VQCs). Significant uncertainty is associated with processes and models and, to date, there has been only limited field-based evaluation of models for this pathway. To address these limitations, a comprehensive evaluation of the Johnson and Ettinger (J&E) model is provided through sensitivity analysis, comparisons of model-predicted to measured vapor intrusion for 11 petroleum hydrocarbon and chlorinated solvent sites, and review of radon and flux chamber studies. Significant intrusion was measured at five of 12 sites with measured vapor attenuation ratios (αm's) (indoor air/source vapor) ranging from ∼1 × 10−6 to 1 × 10−4. Higher attenuation ratios were measured for studies using radon, inert tracers, and flux chambers; however, these ratios are conservative owing to boundary conditions and tracer properties that are different than those at most VOC-contaminated sites. Reasonable predictions were obtained using the J&E model with comparisons indicating that model-predicted vapor attenuation ratios (αp's) were on the same order, or less than the αm's. For several sites, the αm were approximately two orders of magnitude less than the αp's indicating that the J&E model is conservative in these cases. The model comparisons highlight the importance in using appropriate input parameters for the J&E model. The regulatory implications associated with use of the J&E model to derive screening criteria are also discussed.  相似文献   

20.
Masataka Ando 《Island Arc》2001,10(3-4):206-214
Abstract The Nojima Fault Zone Probe was designed to study the properties and recovery processes of the Nojima Fault, which moved during the Hyogo-ken Nanbu earthquake ( M JMA7.2) of 1995. Three holes, 500 m, 800 m and 1800 m deep, were drilled into or near the fault zone by the Disaster Prevention Research Institute, Kyoto University. The 500 m and 800 m holes were drilled in November 1995, and in December 1996 the last hole reached its final depth of 1760 m. The significant results are: (i) Geological and geophysical reconstruction of the structure and evolution of the Nojima Fault was obtained; (ii) the maximum compression axis was found to be perpendicular to the fault, approximately 45° to the regional compression stress axis; (iii) micro-earthquakes (m = –2 to +1) were induced by water injections 1–3 km from the injection points in the 1800 m hole; (iv) the fault zone was measured to be 30 m wide from microscopic studies of core samples. Instruments such as three-component seismometers, crustal deformation instruments, and thermometers were installed in the holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号