首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper aimed to compare epiphyte assemblages of leaves and rhizomes of Posidonia oceanica exposed to different levels of concentration of nutrients. The same design including a potentially impacted meadow and two reference meadows was used in each of two locations, characterized by the presence of a city or of suspended cages of a fish farm, respectively. This allowed to test for the consistency of responses of epiphytic assemblages to different sources of eutrophication. In both studies, results documented differences in patterns of composition and abundance of epiphytic assemblages on leaves between disturbed and reference meadows, while assemblages on rhizomes did not appear sensitive to this kind of disturbance. Moreover, in potentially impacted meadows, both assemblages showed different patterns of spatial variability compared to reference assemblages. Species composition and abundance of epiphyte assemblages seemed suitable for detecting moderate nutrient increases, even if adequate sampling designs are needed to separate patterns related to the large natural spatial variability of these systems from those related to changes in environmental conditions.  相似文献   

2.
This paper reviews the main studies dealing with epiphytes of both leaves and rhizomes of Posidonia oceanica, the main seagrass found in the Mediterranean Sea. A total of 660 epiphyte species has been recorded, including 430 on leaves and 437 on rhizomes. Of these, 205 are Rhodophyta, 59 Ochrophyta, 43 Chlorophyta, 78 Porifera, 82 Cnidaria, 19 Annelida, 155 Bryozoa and 19 Tunicata. The epiphyte assemblages demonstrate a gradient of dissimilarity from west to east, with the eastern area being the most unlike the others. The differences can be attributed mostly to rare species that differ amongst the Mediterranean regions. Many of the dominant taxa have been found in all meadows studied. Data concerning species composition, abundance, and patterns of spatial and temporal variability are summarized, and biotic and abiotic factors controlling the structure of assemblages are discussed. Responses of epiphyte assemblages to anthropogenic stressors, such as nutrient enrichment and biological invasions, are discussed in relation to the use of epiphytes as ecological indicators.  相似文献   

3.
This paper investigates patterns of variability in epiphytes of Posidonia oceanica leaves at various spatial scales around Sicily, including geographical differences among the Mediterranean basins, differences between the small islands and mainland, and the variability among and within replicated meadows in each of the previous conditions. Data on percentage cover of the most common epiphytic organisms were analysed by univariate techniques. Encrusting red algae, encrusting brown algae, filamentous algae, encrusting bryozoans, erect bryozoans, hydroids and Foraminifera were the most abundant taxa. Significant differences in the abundance of taxa were detected among geographical regions, while no significant differences were found between the islands and mainland. At smaller scales, variability was concentrated mostly among leaves 100s of centimetres apart and among meadows a few kilometres apart. These results suggest that both geographical and local processes are important in structuring the epiphytes of P. oceanica leaves in this area of the Mediterranean.  相似文献   

4.
The increase of anthropogenic activities has severely altered both terrestrial and aquatic systems. Urbanisation, excessive use of agricultural fertilisers, organic runoff and climate change have caused an increase of nutrients in coastal waters, altering the diversity and food-web structure of benthic assemblages. The aims of the present paper were to text if an experimentally increased availability of nutrients, primarily nitrogen and phosphorous, in an oligotrophic basin, would affect epiphytic assemblages on leaves and rhizomes of P. oceanica and whether this could change rates of consumption of the plant by herbivores. In particular, we tested the hypothesis i) that changes to species composition and abundance of epiphytic assemblages generated by nutrients enrichment would vary between leaves and rhizomes and that ii) alterations to epiphytic assemblages on leaves might, in turn, modify feeding rates of herbivorous fish. After two years, the structure of both leaf and rhizome epiphytic assemblages responded to changes in nutrient concentrations before the occurrence of drastic alterations to the host plant, but only the former showed significant changes in terms of species composition. Moreover, a larger intensity of grazing on P. oceanica leaves was documented in experimentally enriched areas than in controls. The present findings and conclusions are applicable to other systems where patterns of biodiversity depend on changes in the availability of nutrients due to natural or anthropogenic events, likely interacting with biological processes, such as competition and grazing.  相似文献   

5.
Natural assemblages show large variability at multiple scales in space and time as a consequence of several abiotic and biological factors. This study was conducted in conditions of high turbidity of the water and examined the spatio-temporal variability and the vertical distribution at two different depths of a low rocky subtidal assemblage. Algal and invertebrate organisms were sampled at a range of spatial scales extending from meters to a few kilometers, over a period of 21 months. Results indicated that patterns of distribution and abundance of organisms differed between the two depths and at the smallest spatial scales examined. These differences were due to differences in relative abundance rather than differences in composition of taxa. Results showed that assemblages varied largely among dates of sampling, suggesting that temporal variability of these organisms may be more important than previously stated. The patchy distribution and the peculiar life traits of most taxa of these assemblages allowed the concept of metapopulation and metacommunity to be applied to this system. This might have implications for predictions of the responses of subtidal assemblages to environmental changes due to anthropogenic activities.  相似文献   

6.
《Oceanologica Acta》1999,22(4):421-429
Halophila stipulacea, a seagrass introduced into the Mediterranean Sea as a Lessepsian immigrant, is nowadays common in the eastern Mediterranean, and it was recently recorded in the western Mediterranean; very little information is available about the algal flora associated with this species. During a survey of a Halophila stipulacea stand at Vulcano Island (Eolian Islands, western Mediterranean), samples were collected at three depths (5 m, 15 m and 25 m) for identification of algal epiphytes. Thirty-six species of macroalgae were found. The epiflora of the leaves consisted of 20 species, the others being mixed with or entangled in the rhizomes. On the leaves, Ceramium tenerrimum, Dasya corymbifera, Polysiphonia cfr. tenerrima, Spyridia filamentosa, Chondria pygmaea and Laurencia sp. were the most common species; between the rhizomes, Dictyota linearis was abundant. A differentiation of the epiphytic assemblage between 5 m and the other depths was observed; the 5 m samples were characterized by the abundance of Ceramium tenerrimum, Chondria pygmaea and Polysiphonia cfr. tenerrima, while at 15 m and 25 m Laurencia sp., Dasya corymbifera and Spyridia filamentosa were the most common species. Epiphytic cover was generally very low. No rare species were found among the epiphytes. In comparison with other Mediterranean seagrasses, Halophila stipulacea has a qualitatively and quantitatively poor epiphytic flora. In particular, the virtual absence of encrusting corallines is noteworthy. A fast turnover rate of the leaves is hypothesized to be the main reason for this scarcity. Differences between this and other studies on epiphytes of Halophila stipulacea stands are discussed.  相似文献   

7.
Worldwide, urbanisation has resulted in extensive replacement of natural habitats with man-made habitats. In Sydney Harbour, Australia, approximately half of the natural foreshore has been replaced by seawalls. Many of these have wharves built over part of their length, which could affect intertidal assemblages on seawalls beneath the wharves. This was tested by sampling and comparing assemblages under and not under wharves in Sydney Harbour. Assemblages differed between the two habitats, with greater cover of macro-algae and abundance of grazing molluscs on seawalls without a wharf and, to a lesser extent, greater cover of sessile invertebrates on seawalls under a wharf. There was, however, considerable spatial variability among locations in composition of assemblages and the species dominating differences between the two habitats. The impact of multiple artificial structures in close proximity and the variability among apparently homogeneous artificial habitats must be considered for the management of urbanised estuaries.  相似文献   

8.
The aim of this survey was to study the cover and the composition of macroepiphytic species on the leaves of Posidonia oceanica in the east of Tunisia. Surveys were conducted in December 2009 (winter period), March (spring period) and August 2010 (summer period) in a fringing reef located in Chebba. At each sampling date, 15 adult leaves were randomly collected and divided into basal and apical parts. The inner face of each part was examined with ocular glasses and microscope to estimate species cover by orthogonal projection. PERMANOVA and ANOSIM were used to test for differences of cover between sampling dates and leaf parts. SIMPER, cluster analysis, and PCA were used to ordinate species assemblages. Comparison of epiphytic cover along leaf blades showed significant differences for all groups, except cyanophycea, with high cover of hydrozoans and bryozoans in the basal part and high cover of algae in the apical part. The species composition and cover also vary with sampling date; minimum values were detected in December and the epiphytic community was composed of a few pioneer species, whereas maximum epiphytic cover values were registered in August, with the epiphytic community being composed of a more mature and more diverse community, termed ‘climax’. The main regulatory factors for this distribution are discussed.  相似文献   

9.
At regional scales, the distribution of species and the structure of assemblages vary with latitude within many marine and terrestrial systems. The oligotrophic coastal waters of Western Australia (WA) support highly speciose and endemic assemblages, yet spatial patterns in benthic structure are currently poorly known. We examined benthic assemblage composition along a latitudinal gradient of 28.5–33.5°S and a depth gradient of 14–62 m, on subtidal reefs in warm-temperate WA. We surveyed benthos using a remotely triggered digital stills camera. In total, we sampled macroalgae and sessile invertebrates at 201 sites spread across four locations. Percent cover of coarse taxonomic groups and dominant species was estimated from over 2000 photoquadrat samples. We recorded significant differences in benthic assemblage composition between locations, and along depth gradients within each location. However, the magnitude of change with depth was not consistent between locations, and shifts in assemblage composition along the depth gradients were not as pronounced as expected. The percent cover of all dominant benthic groupings differed between locations, and several key taxa, such as the kelp Scytothalia dorycarpa, brown foliose macroalgae, hard corals and sponges, changed predictably along the latitudinal gradient. Our study adopted a coarse taxonomic, but assemblage-wide, approach to describing macrobenthic assemblages, and clear differences between locations and depths were detected. The surveys have provided baseline data on broad scale ecosystem structure against which to detect future ecological change.  相似文献   

10.
We conducted a field experiment to assess the response of phytal harpacticoids to nutrient‐driven increases of epiphyte load in Posidonia oceanica meadows. First, we evaluated differences in species richness, diversity and assemblage structure of phytal harpacticoids in P. oceanica meadows with differing epiphyte loads. Secondly, we conducted a field experiment where epiphyte load was increased through an in situ addition of nutrients to the water column and evaluated the responses of the harpacticoid assemblages. We predicted that there would be changes in the harpacticoid assemblages as a result of nutrient‐driven increases of epiphyte load, and that these changes would be of a larger magnitude in meadows of low epiphyte load. Our results show that the harpacticoid fauna (>500 μm) present in P. oceanica meadows in the Bay of Palma comprised taxa which are considered phytal and other less abundant ones previously described as sediment dwellers or commensal on other invertebrate species. Nutrient addition had an overall significant effect on epiphyte biomass and on harpacticoid abundance, diversity and assemblage structure, possibly as a response to the increased resources and habitat complexity provided by epiphytes. The abundance of dominant species at each location was favoured by nutrient addition and in some cases correlated with epiphytic biomass, although never strongly. This may indicate that structural complexity or diversity of the epiphytic cover might be more important than the actual epiphytic biomass for the harpacticoid species investigated. More species‐specific studies are necessary to ascertain this and clarify the relationships between harpacticoids and epiphytes in seagrass meadows. To our knowledge, this is the first account of harpacticoid species associated with P. oceanica leaves and the epiphytic community they harbour in the Mediterranean Sea.  相似文献   

11.
The demand for sensitive biological tools to assess the environmental quality of coastal waters at broad spatial scales is increasing. Many of the tools used are based on the taxonomic composition of biotic assemblages. They usually require a valuable taxonomic expertise while are unique reflecting the overall ecosystem integrity. Here, we evaluate the potential indicator value of several features of the epiphytic community (overall assemblage composition, species richness, and proportion of the main taxonomic groups) growing on the seagrass Posidonia oceanica leaves. We do so by empirically examining their changes along a disturbance gradient where multiple human activities have interactive and cumulative impacts, sampling at different spatial scales and at two different depths (5 and 15 m). Our results show that the specific composition of the epiphytic assemblages (i.e. species composition) closely reflects, in the deep meadows, the combined effects of different anthropogenic stressors along the gradient, showing an integrative and non-specific response. Similarly, an increase in the proportion of hydrozoans, and a decrease in the proportion of rhodophytes and chlorophytes are observed in deep meadows along the gradient. In shallow meadows, grazing and biotic features of the seagrass seem the main forcing factors determining species composition, and therefore masking the response of epiphytes to the deterioration gradient. After address the effect of natural sources of variability (water depth, within- and between-meadow heterogeneity), changes in epiphyte assemblages and in the proportion of hydrozoans, rhodophytes and chlorophytes in relatively deep meadows seem promising monitoring tools for detecting coastal environmental deterioration.  相似文献   

12.
Although benthic macrophytes must be considered in monitoring programs to establish the ecological status of transitional and coastal waters in the European Union, the patterns of variability in species composition of macrophyte assemblages in Mediterranean coastal lagoons has scarcely been studied. In this work the spatial (both vertical and horizontal) and seasonal dynamics of macrophyte assemblages in a coastal lagoon (Mar Menor) are compared with those of open coastal assemblages in the SW Mediterranean to analyze any biological variability in lagoon assemblages and the factors that determine such variability. Different assemblages, characterized by well defined groups of species, can be described according to their isolation from the open sea and the type of substratum; at the same time, a vertical zonation pattern, similar to that found in all marine communities but more compressed, exists. This implies that when applying the EU Water Framework Directive or assessing environmental impact, a lagoon should not be considered spatially uniform and unique unit but as a mosaic of assemblages.  相似文献   

13.
The aim of this research was to study spatial and temporal variation in epiphyte cover and leaf biomass of Posidonia oceanica in Eastern Tunisia. Sampling was conducted at four stations on the Mahdia coast during October and December 2010, and April and August 2011, which correspond respectively to autumn, winter, spring and summer in this area. Posidonia oceanica shoots were collected at two depths (5 and 10 m). Cover of macroinvertebrates and macroalgae was estimated on adult leaves. The results showed that leaf and epiphyte biomasses vary significantly according to sampling date, with the highest values recorded in August. We found a high diversity of epiphytic assemblages on the leaves of P. oceanica with clear qualitative and quantitative dominance of Rhodophyceae compared to other groups, followed by Phaeophyceae. Most epiphyte species on the leaves of P. oceanica in Eastern Tunisia are the same as those in other parts of the Mediterranean Sea. No bathymetrical variation in the epiphytic community was found in our study area, which can be explained by the high levels of water clarity in Mahdia.  相似文献   

14.
The aim of this paper is to study the macrofaunal community dynamics and the biological–environmental interactions in the mid- and sublittoral ecosystems of the microtidal Mediterranean sandy shores. Four sandy beaches, three on the island of Crete and one on the northwest coast of Italy were selected to investigate the spatial and temporal changes in the community structure and the associated environmental variables. The littoral zone, which has not been adequately studied in the Eastern Mediterranean, presents special interest not only from the scientific point of view but also for practical reasons of ecological management. The multivariate techniques revealed that the community pattern of the sandy beach macrofauna is mainly spatial rather than temporal. There are pronounced differences in species composition and abundance of the macrofaunal assemblages of the mid- and sublittoral zone. The multicausal environmental severity hypothesis appears to be valid for the sandy beach macrofaunal communities of the Mediterranean. The abundance and composition of the macrofaunal assemblages are highly variable and are affected by the synergistic effects of many environmental variables. The polychaete taxonomic assemblage structure closely follows the macrofaunal community pattern. Differences between the two patterns may arise from the different responses that polychaetes may show to the environmental stress.  相似文献   

15.
16.
A study was undertaken of the patterns of spatial variability, epiphytic biomass and distribution of epiphytic fauna and flora of Posidonia oceanica. Samples were taken at four stations located approximately 4 km apart, exposed to different current conditions. Stations A and B, situated near the Oued Mimoun tidal channel with its relatively strong bi‐directional flows, were affected by high current tide. The other two stations, North Oued Mimoun (L1) and South Oued Mimoun (L2), were located further from the channel, in low current tide conditions. Sampling was conducted in the Attaya area of Kerkennah Island (Tunisia) in August 2009 at depths between 2 and 3 m, with the results indicating differences among the stations. Shoot density decreased when exposed to high levels of hydrodynamic activity generated by current tides whereas the epiphytic biomass of P. oceanica leaves decreased at sheltered stations located far from the channel. Epiphytic algae such as Heterokontophyta, Rhodophyta and Chlorophyta, and epiphytic fauna represented by Bryozoa, Hydrozoa, Annelida, Porifera and Tunicata, dominated the epiphytic assemblages and were abundant at the station most exposed to high current tide hydrodynamics. Cyanobacteria, however, were dominant in stations exposed to low current tide.  相似文献   

17.
Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides and Petrosia ficiformis were investigated over 15 months at Paraggi and Colombara within the Marine Reserve of Portofino Promontory (Mediterranean Sea, Ligurian Sea, Italy). For both species, growth rates varied between individuals and were unaffected by initial sponge size. The two species showed a different trend in growth pattern: A. oroides did not vary significantly between seasons, sites and depths; in contrast, some individuals of P. ficiformis showed a seasonal pattern, shrinking during winter as water temperature decreased and growing during summer when water temperature increased. Differences in growth between the two species may result from different reproductive cycles, food availability, species-specific thermophily and patterns of spatial competition. Moreover, spatial competition probably induced sponges to produce bioactive secondary molecules. Spatial and temporal variation of bioactivity of both species was examined for the first time by studying its effect on human neuroblastoma cells. The bioactivity of A. oroides extracts differed significantly between seasons, sites and depths, whereas the cytotoxicity of P. ficiformis differed significantly between seasons and depths (differences for sites were not determined). These results suggest the possible influence of environmental factors on bioactive metabolite biosynthesis.  相似文献   

18.
Variability of fish assemblages across habitat structures can depend on spatial scales. A hierarchical sampling design was used to assess the spatial variability of temperate fish assemblages in different habitats and at multiple scales. Underwater visual censuses were carried out along the coasts of Elba Island (NW Mediterranean) on Posidonia oceanica beds, rocky algal reefs and sandy habitat at three spatial scales, namely tens of metres (individual replicates), hundreds of metres (sites) and tens of kilometres (locations). At the assemblage level, there was a clear relationship between fish and habitat type and the observed habitat‐related differences were largely dependent on species identity. Fish assemblages on P. oceanica beds and rocky reefs shared a high number of species, whereas overlap with sandy assemblages was negligible. Multivariate analyses revealed significant differences in fish assemblages among habitats, although there was also a significant habitat × site interaction. These differences relied mainly upon assemblage composition and species richness. Assemblages on rocky reefs and P. oceanica meadows usually harboured a higher number of species and individuals compared with sandy assemblages. Nevertheless, the patterns of habitat‐related differences in species richness and, especially, in the total number of fish, changed significantly from site to site. Eight species showed significant differences over habitats, but they were not consistent due to the interaction of habitat with site. Predictability of fish at both assemblage and population levels decreased with the scale of observation, and the spatial pattern of fish observed at the smallest scale was likely dependent on factors other than habitat type.  相似文献   

19.
The invasive green alga Caulerpa racemosa var. cylindracea represents an important threat to the diversity of Mediterranean benthic coastal ecosystems by interfering with native species and modifying benthic assemblages. The present study deals, for the first time, with the temporal and spatial variability of the biomass and phenology of C. racemosa considering both deep- and shallow-water populations. Two sampling depths (30 and 10 m) were sampled at three different rocky bottom sites every 3 months in the Archipelago of Cabrera National Park (Western Mediterranean). All morphometric variables analysed showed a spatial variation and temporal patterns depending on depth. Between depths, C. racemosa biomass, stolon length, number of fronds and frond length were usually significantly higher at deep-water populations, suggesting that C. racemosa grows better in deep-waters. Deep- and shallow-water populations displayed a high temporal variation although no evidence of seasonal patterns was found, in contrast with what has been reported by other authors. The sources of this variability are still unknown but probably both physical factors and differential herbivory pressures display a key role.  相似文献   

20.
The effects of taxonomic resolution on the variance estimates of macrobenthic assemblages were studied at four spatial scales in a Mediterranean coastal lagoon. The assemblages exhibited significant differences at all the investigated scales; however, spatial variability was mainly associated with the smallest and the largest scales. The decrease of taxonomic resolution (from species to family) was not related to a decrease of the overall variability and similar estimates of variance components were obtained using species and family resolution levels. The ordination models derived from species and family abundances were very similar both in terms of location and dispersion effect, while further aggregation to the class level began to alter the observed spatial patterns. In future studies aimed at assessing changes in the lagoon, resources derived from the cost reductions achieved using family level could be employed to plan more frequent surveys and/or to adopt complex spatial sampling designs with a high number of replicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号