首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successive aeolian saltation: studies of idealized collisions   总被引:3,自引:0,他引:3  
As observed by Bagnold and experimentally reconfirmed by other workers, the impact angles of saltating grains are remarkably constant over a wide range of conditions, lying between 10° and 16°. It can be shown that successive saltation contains a mechanism which very effectively confines impact angles to that range. This control mechanism is most effective at windspeeds less than about 15–30 m s-1, depending on grain diameter and mass. The control mechanism is evaluated from model calculations of grain populations saltating over a level bed consisting of a layer of loose grains. The grains are assumed to be spherical and uniform in size and mass, also rigid and perfectly elastic. The model also describes distributions of maximum height of grain paths and of lift-off-angles. Compared to other processes involved in aeolian saltation, successive saltation is the only process with a high probability of transferring energy from horizontal into vertical grain movement. This fact, together with the calculations presented, strongly suggests that successive saltation plays a major role in saltation in air. Successive saltation of uniform grains is theoretically impossible if the ground over which saltation occurs is tilted by about 15° against wind direction. Values of tilt angles in this range are observed in nature as stoss-side angles of dunes and ripples, leading to the concept that stoss-sides are tilted up by deposition until successive saltation is subdued.  相似文献   

2.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

3.
ABSTRACT The vertical and horizontal distributions of aeolian mass flux were measured at Oceano Dunes, California, and these data were used to evaluate a numerical model of saltation. Grain‐size analyses showed that the distributions of the modal sediment size class corresponded closely to those of the total sediment population, and modelling thus focused on replicating the distributions of the mean grain size. Although much previous work has assumed that the mean launch speed of saltating particles varies in proportion to shear velocity, simulations using a constant mean launch speed were found to yield the closest approximations to the mass flux distributions observed in the field. Both exponential and gamma distributions of launch velocity produced realistic simulations, although the latter approach required the inclusion of an additional reptation component to achieve good results. A range of mean launch angles and an equivalent sphere correction were also found to generate comparable results, providing the other input parameters could be varied freely. All the modelling approaches overestimated the proportion of mass flux occurring at the bottom of the vertical distributions, and underestimated the proportion occurring at the upwind end of the horizontal distributions. No theoretical shortcoming that would account for these small, but systematic, discrepancies could be identified, and experimental error thus represents a more plausible explanation. The conclusion that mean grain launch speeds are essentially constant and independent of shear velocity suggests that the additional kinetic energy extracted by grains under more energetic wind conditions is largely transferred to the bed, and that increases in the transport rate are therefore driven primarily by the ejection of additional grains. It is suggested that the kinetic energy of rebounding grains is constrained by the ability of the bed to resist deformation, equivalent to a plastic limit. Hence, grains of larger mass (diameter) rebound from the bed at lower speeds, and follow shorter, lower trajectories, as has been widely observed previously.  相似文献   

4.
The erodibility of a grain on a rough bed is controlled by, among other factors, its relative projection above the mean bed, its exposure relative to upstream grains, and its friction angle. Here we report direct measurements of friction angles, grain projection and exposure, and small-scale topographic structure on a variety of water-worked mixed-grain sediment surfaces. Using a simple analytical model of the force balance on individual grains, we calculate the distribution of critical shear stress for idealized spherical grains on the measured bed topography. The friction angle, projection, and exposure of single grain sizes vary widely from point to point within a given bed surface; the variability within a single surface often exceeds the difference between the mean values of disparate surfaces. As a result, the critical shear stress for a given grain size on a sediment surface is characterized by a probability distribution, rather than a single value. On a given bed, the crtitical shear stress distributions of different grain sizes have similar lower bounds, but above their lower tails they diverge rapidly, with smaller grains having substantially higher median critical shear stresses. Large numbers of fines, trapp.ed within pockets on the bed or shielded by upstream grains, are effectively lost to the flow. Our calculations suggest that critical shear stress, as conventionally measured, is defined by the most erodible grains, entrained during transient shear stress excursions associated with the turbulent flow; this implies a physical basis for the indeterminacy of initial motion. These observations suggest that transport rate/shear stress relationships may be controlled, in part, by the increasing numbers of grains that become available for entrainment as mean shear stress increases. They also suggest that bed textures and grain size distributions may be controlled, within the constraints of an imposed shear stress and sediment supply regime, by the influence of each size fraction on the erodibility of other grain sizes present on the bed.  相似文献   

5.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   

6.
Sediment transport by wind is one of many processes of interest to the geomorphologist in which grain to grain contacts play an important role. In order to illustrate the modelling of collections of frictional, inelastic sedimentary grains with the particle dynamics method (PDM), we use the grain impact process in aeolian saltation as a specific example. In PDM, all the forces on each particle are evaluated at a sequence of small time-steps, and the Newtonian equations of motion are integrated forward in time. Interparticle forces at grain contacts are treated as springs with prescribed stiffness (normal force) and by a Coulomb friction law (tangential force); particle inelasticity is represented by spring damping. The granular splash resulting from saltation impacts is assessed for sensitivity to the choice of grain properties, and the integration time-step. We find that for the range of impact speeds and impactor masses relevant to aeolian settings, grain splashes are relatively insensitive to grain stiffness, grain inelasticity and grain friction, and that the pattern of ejection from the bed is largely controlled by bed microtopography. A large set of impact realizations involving a variety of impact points on a small set of target beds is used to collect the appropriate statistics for describing the stochastic splash process. The splash function representing these statistics is then available for use in calculations over longer time-scales, such as the evolution of the saltation curtain. The details given here will enable the interested reader to adapt PDM modelling to other types of clastic sedimentary systems.  相似文献   

7.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

8.
Rates of aerodynamic entrainment in a developing boundary layer   总被引:1,自引:0,他引:1  
Despite its significance for inception of grain transport by wind, the initial dislodgement of grains from a static surface by aerodynamic forces of drag and lift in the absence of grain collision has received little attention. This paper describes a series of wind-tunnel experiments in which the erosion of narrow strips of loose grains from the roughened surface of a flat plate exposed to a range of wind speeds was examined. The progressive downwind development of the boundary layer over the plate provided a range of airflow conditions which permitted systematic evaluation of grain entrainment rates arising from purely aerodynamic forces. Use of closely graded size fractions in flat, single grain layers resting on identical, fixed grain support eliminated the effects of surface irregularities and impacts from saltation. Results show that erosion of strips of loose grains develops with time according to an inverse exponential function in which the entrainment rate time constant relates to Shields dimensionless shear stress function. An empirical expression defining aerodynamic entrainment rate in terms of rate of strip erosion is derived and comparisons are made between present and published data. The need for additional data to resolve several questions raised by the present investigation is stressed. In addition, a simple, objective technique for accurate determination of the aerodynamic entrainment threshold of any loose, granular sediment is proposed.  相似文献   

9.
On the effect of mid-air collisions on aeolian saltation   总被引:9,自引:0,他引:9  
The effect of mid-air collisions on aeolian saltation is investigated using concentration profiles and grain velocities predicted by a numerical saltation model. The probability of a mid-air collision is found to be greater at high wind speeds. It is also found that mid-air collisions tend to reduce the number of grain/bed impacts and thus reduce the number of ejecta near the bed; this, in turn, reduces the intensity of mid-air collisions. It is suggested that this feed-back mechanism significantly influences transport rates at high wind speeds.  相似文献   

10.
Characterizing the height profile of the flux of wind-eroded sediment   总被引:4,自引:0,他引:4  
Wind erosion causes severe environmental problems, such as aeolian desertification and dust storms, in arid and semiarid regions. Reliable prediction of the height profile of the wind-eroded sediment flux is crucial for estimation of transport rates, verification of computer models, understanding of particle-modified wind flows, and control of drifting sand. This study defined the basic height profile for the flux of wind-eroded sediment and the coefficients that characterize its equation. Nine grain-size populations of natural sand at different wind velocities were tested in a wind tunnel to measure the flux of sediment at different heights. The resulting flux profiles resemble a golf club with a small back-turn where the flux increases with increasing height within 20 mm above the surface. If the small back-turns are neglected, the flux profiles can be expressed by an exponential-decay function where q r(z) is the dimensionless relative flux of sediment at height z, which follows the exponential-decay law proposed by previous researchers for aeolian saltation. Three coefficients (a creep proportion, a relative decay rate, and an average saltation height) are proposed to characterize the height profile. Coefficients a and b in the above equation represent the creep proportion and relative decay rate as a function of height, respectively. Coefficient a varies widely, depending on grain size and wind velocity, but averages 0.09. It is suggested that the grain size and wind velocity must be specified when discussing creep proportion. Coefficients a and b are nearly linearly correlated and decrease as grain size and wind velocity increase. The average saltation height (the average height sediment particles can reach) was a function of grain size and wind velocity, and was well correlated with coefficients a and b.  相似文献   

11.
A theoretical model for aeolian impact ripples   总被引:12,自引:0,他引:12  
New insights into the grain-bed impact process arising from both numerical and physical experiments involving single grain impacts lead to a more complete conceptual model of the aeolian saltation process that in turn allows a simple model of aeolian impact ripples to be developed. The saltating population may be idealized as consisting of (1) long trajectory, high impact-energy, constant impact-angle ‘successive saltations’, and (2) short trajectory, low impact-energy ‘reptations’. It is argued that the spatial variations in mass flux due to the reptating population lead to the growth and translation of impact ripples. Using the sediment continuity equation, an expression for the spatial variation in the ejection rate of reptating grains from a sinusoidally perturbed bed, and a probability distribution for the reptation lengths, a simple stability analysis demonstrates that the flat bed is unstable to small amplitude perturbations. A fastest-growing wavelength emerges that is roughly six times the mean reptation length, and is only weakly dependent upon the detailed shape of the probability distribution of reptation lengths. The results match well with the observed initial wavelengths in wind tunnel experiments.  相似文献   

12.
The results are reported of a combined optical and electron microscopy study of microstructural variations across a quartz mylonite zone with increasing shear strain. The mylonite developed by recrystallization of the deformed quartz grains with increasing shear strain. It was found in a given specimen that the size of recrystallized grains and of sub-grains were always smaller in electron micrographs. The possible reasons for this are discussed. The size of both features decreased with increasing shear strain irrespective of the microscope used. However the density of unbound dislocations remained constant. A marked grain size reduction occurred in phyllosilicate rich layers. Variations in sub-grain size were observed within the relict old grains which remained at low shear strains. These are thought to reflect stress intensification adjacent to grain boundaries during deformation. The relict grains recrystallized at higher strains. Stresses were estimated from grain and sub-grain sizes and from the dislocation density. The results indicate that estimates based on grain size are unreliable if phyllosilicates inhibit the growth of grains during recrystallization, and that the dislocation densities are altered during uplift and are unlikely to give meaningful estimates. It is also concluded that the microstructures reflect stress gradients present during the formation of the mylonite, that is the initiation and propagation of the shear zone and that these were subsequently replaced by strain rate gradients.  相似文献   

13.
Development of deflation lag surfaces   总被引:3,自引:0,他引:3  
A series of wind tunnel tests were carried out to investigate the development of deflation lags in relation to the non-erodible roughness element concentration. Glass spheres (18 mm in diameter) were placed along the complete length of the wind tunnel working section in regular staggered arrays using three different spacings (d=18, 30 and 60 mm) and completely covered with a 0.27-mm erodible sand. A pre-selected free stream velocity above threshold (8m s?1) was established above the surface and the sediment transport measured at 2-s intervals using a wedge-shaped trap in which an electronic balance is incorporated. Throughout each test, the emerging lag surface was periodically photographed from above at two locations upwind of the trap. The photographs were electronically scanned and analysed to calculate the lag element coverage and location, as well as mean height and frontal area for each time period. Test results indicate that lag development has a profound effect on both the sediment flux and wind profile characteristics. Initially, there is an increase in sediment flux above that for a rippled sand bed because of increased erosion around and reduced kinetic energy loss in highly elastic collisions with the emerging roughness elements. With further emergence, a dynamic threshold is reached whereupon the sediment flux decreases rapidly, tending towards zero. At this point, the supply of grains to the air stream through fluid drag follows a reduction in aerodynamic roughness and, therefore, surface shearing stress. At least as important is the lesser potential for grain ejection at impact because of reduced momentum imparted from the air stream during saltation. Although recent shear stress partitioning models indicate when particle movement may commence on varying surfaces, our experimental results demonstrate that this partitioning has a further direct bearing upon the saltation flux ratio.  相似文献   

14.
Collision data are presented from coloured high-speed films of three size fractions of sand grains saltating over a bed of the total grain population. Each fraction was colour tagged and the proportion of each size ejected by grains colliding with the surface was recorded on a number of films taken as the bed was progressively eroded. The results confirm earlier findings that V3/V1?0.5–0.6, Vn/V1?.08 and the rebound angle increases with decreasing grain size. Ejected grains are examined in relation to their size, the impactor size, ejection speed and angle and the number of ejecta per collision. In addition, changes in grain parameters are observed with time. For fine impactors, ejection speeds generally increase with a decrease in ejecta size, but the fine fraction does not follow this trend for the coarse and medium impactors. Ejection angles are typically between 40° and 60°, with coarse grains having shallower mean angles than fine ejecta. The number of ejections per collision increases with a decrease in particle size for each impactor size. The general tendency for coarse particles to be ejected at lower speeds and shallower angles than fine particles will lead to sorting of the grain sizes. There is poor correlation between the forward momentum loss of the saltating grams at collision and both the forward momentum of the ejected grains and the number of ejected grains. Much of the forward momentum of the saltating grains is transfered to creeping grains. The composition and geometry of the bed are considered to be important factors in the evolution of the saltation cloud.  相似文献   

15.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

16.
Quasi-horizontal trajectories of salting sand grains were found using high-speed video-recording in the desertified territory of the Astrakhan region. The sizes and displacement velocities of the saltating sand grains were determined. A piecewise logarithmic approximation of the wind profile in a quasi-stationary wind–sand flow is suggested, which is consistent with the data of observations and modeling. It was established that, in the regime of stationary saltation, the wind profile in the lower saltation layer of the wind–sand flow depends only slightly on the wind profile variations in the upper saltation layer. The vertical profiles of the horizontal wind component gradient in a quasi-stationary wind–sand flow were calculated and plotted. It was shown using high-speed video recording of the trajectory of a sand grain with an approximate diameter of 95 μm that the weightlessness condition in the desertified territory of the Astrakhan region in a stationary wind–sand flow is satisfied at a height of approximately 0.15 mm. The electric parameters of a wind–sand flow, which can provide for compensation of the force of gravity by the electric force, were estimated. In particular, if the specific charge of a sand grain is 100 μC/kg, the force of gravity applied to the sand grain can be compensated by the electric force if the vertical component of the electric field in a wind–sand flow reaches approximately 100 kV/m. It was shown that the quasi-horizontal transport of sand grains in the lower millimeter saltation layer observed in the desertified territory can be explained by the joint action of the aerodynamic drag, the force of gravity, the Saffman force, the lift force, and the electric force.  相似文献   

17.
The grain/bed collision in sand transport by wind   总被引:6,自引:0,他引:6  
In the last decade much progress has been made toward the development of a comprehensive model of aeolian sediment transport in which the grain/bed collision has been identified as having a significant role. The grain/bed collision has been studied by both physical experiments and numerical simulation. A principal objective of these studies has been to gather sufficient data to characterize the collision in order that it may be represented as an empirical function in numerical models of the sand transport system. Thus the study of the exact physical mechanism of the collision has to some extent been neglected. The transport of larger particles in saltation over a loose surface is known to promote the release of finer particles from that surface into suspension. Thus the precise physics of the grain/bed collision become highly significant with regard to the physics of dust release from a surface. This paper re-examines previous collision data and compares them with a simple collision model. This model proposed that the impinging grain strikes a single surface grain and rebounds: an alternative mechanism might be that the impinging grain ploughs through the surface striking a number of bed grains before rebounding. The collision data are shown to support the model: first, because the duration of the collisions observed on the high speed film supports a short contact time with the surface and, second, because the data fit well with the model.  相似文献   

18.
川西高原甘孜黄土的成因   总被引:10,自引:1,他引:9  
本文通过对甘孜满地黄土的粒度组分、石英砂的表面结构以及其它地质现象的综合研究,对甘孜黄土的成因进行了探讨。在黄土的概率累计曲线上,跃进组分和悬移组分反映明显,并以悬移组分为主。悬移组分粒径小于2φ~3φ,并以粉砂(4φ~8φ)为主,占悬移总体的94%~99%;对甘孜黄土进行扫描电镜观察表明,石英砂大部分为块状颗粒,少量(10%)呈纺锤形。采用矩阵法计算甘孜黄土的粒度参数:黄土的平均粒径(d50)为5.057φ~5.883φ,明显大于古土壤(6.120φ~6.549φ).古土壤的标准偏差(σφ)为1.513~1.973,大于黄土(1.205~1.778);黄土和古土壤的偏度系数(SKφ)为-0.088~0.248,显示为正偏或近于对称。黄土和古土壤的尖度系数(Kφ)分别为0.123~1.702、0.023~0.059,前者峰形窄,后者峰形较宽。对甘孜黄土扫描电镜观察表明,石英砂大部分为方形或长方形颗粒,少量(10%)呈纺锤形。石英砂有密集的翻卷片、蛇曲脊、圆麻坑,这些结构反映了风成特征。另方面,少量石英砂显示冰川作用结构,例如大大小小的贝壳状断口、平行擦痕等。在甘孜西面、德格以南的金沙江东岸川藏公路980km路碑处,三阶地上部的黄土层中,发现3条冰楔。此外,甘孜黄土中孢粉稀少。根据上述特征推断,甘孜黄土应为冰缘风成黄土。   相似文献   

19.
The pattern of grainfall deposition in the lee of aeolian dunes   总被引:1,自引:0,他引:1  
ABSTRACT
A simple model for the deposition pattern in the lee of aeolian dunes is presented that relies heavily upon a recently developed understanding of aeolian saltation. Grainfall deposition at any position on the lee face is the result of all saltation trajectories that leave any point on the surface of the dune upwind of the brink with sufficient initial velocity to travel the intervening distance. The deposition rate at any position on the lee slope is obtained by integrating over all combinations of initial position and required velocity, the velocity being weighted by its probability density.
The resulting calculated total deposition rate patterns show distinct maxima on the order of one to a few decimetres from the brink, beyond which deposition rates fall off roughly exponentially. An important length scale emerges that characterizes this decay with distance from the brink, the length increasing with wind velocity, and decreasing with grain diameter. It is shown that this length scale is on the order of one metre for typical grain size and wind conditions. That this is typically smaller than the length of the lee slope is what gives rise to the oversteepening and eventual avalanching of the lee sides of aeolian dunes. The position of a pivot point on the lee slope may be predicted, separating source regions from accumulation regions for grainflow avalanche deposits.
The calculated patterns provide not only a means for quantitative interpretation of active and fossil dune grainfall deposits, but they provide the initial geometry for grainflow avalanches. The initial failures should coincide with the steepest gradient in grainfall deposition, slightly downslope from the grainfall maximum.  相似文献   

20.
We report results of experiments intended to test the validity of a model for aeolian saltation and the resulting pattern of deposition on the lee side of aeolian dunes. In steady sea-breeze conditions on a 3-m-tall dune at Point Año Nuevo, California, we measured simultaneously the near-brink wind speed and the deposition on both horizontal and lee face collector platforms. We then used the details of the deposition patterns to constrain approximate values of parameters in a numerical model of the deposition rate that incorporates the essence of the saltation process. Best fits to the data constrain a parameter that controls the probability distribution of liftoff speeds. In addition, the total vertical number flux of grains is constrained to roughly 107?108 grains m?2 s?1 at shear velocities of 0.33–0.40 m s?1. The lee side deposition pattern, which shows the expected maximum in deposition rate at a distance of several decimetres from the brink, is also well fit by the model. In addition, simultaneous collection of horizontal and lee deposition patterns, along with the numerical simulation of these patterns, strongly implies that the windfield in the lee of this particular dune is best described as a non-recirculating wake. Grainflows on the lee face are caused by failure of grainfall depositional bumps. Our results suggest that the principal effect of increased wind speed is to increase the frequency of grainflows. rather than to increase their size, implying that very large, thick grainflows require a different mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号