首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The arid rangelands of Syria cover over half of the nation's landmass. Punctuating this landscape are broad, dry basins, or wadis, and gentle landscape depressions that exhibit localized elevated vegetation productivity and unique edaphic and hydrologic properties. Historically, continuous heavy grazing and aggressive agricultural activities resulted in excessive ecological degradation within these sensitive environments. Information is needed to determine the influence of livestock grazing on plant communities in landscape depressions and the impact that this has on ecosystem resilience. The purpose of this research is to evaluate the effect of short-term sheep grazing on vegetation characteristics and plant community structure within depressions, and to provide recommendations for improved grazing management. Study plots were randomly located within paired topographic depressions located in northwestern Syria. Vegetation samples were collected along transects including plant biomass, plant density, herbaceous cover, and species diversity. In grazed plots, plant biomass was 49 g DM/m2 compared to 234.4 g DM/m2 in protected plots. Average plant density was 65 plants/m2 in grazed plots compared to 1013 plants/m2 in protected plots (P = 0.001). Herbaceous cover was 175% higher on protected sites compared to grazed plots. Average diversity (Shannon–Wiener index value) was 0.8 in grazed plots compared to 2.3 in protected plots. These results suggest that plant community structure will be impacted from short-term grazing and that a site's ability to positively respond to disturbance over time may be limited. We conclude that carefully planned grazing management should result in greater plant productivity and diversity.  相似文献   

2.
In the semi-arid steppe rangelands of Central Turkey, Festuca valesiaca and Thymus sipyleus ssp rosulans have become the dominant species on degraded pastures. We hypothesized that decreases in species richness and abundance are correlated with increasing prevalence of these two species. Therefore, our objectives were to determine whether there are patterns in examined vegetation; how dominant species contribute to these patterns; and how patterns differ between grazed and ungrazed vegetation. We determined that protection from grazing increased species richness. Grazing significantly changed composition through decreasing total plant, forb, grass and F. valesiaca covers, while substantially increasing T. sipyleus cover. Topography, soil and grazing appear to impact the dominance of plant communities where F. valesiaca and T. sipyleus prevail. These two dominant species had a significant effect in shaping vegetation patterns. Based on regression analysis, alterations in species richness with changes in cover of forbs and shrubs were evident, and spatial heterogeneity of F. valesiaca and T. sipyleus indicated unstable vegetative patterns in heavily grazed pastures and successional changes in protected pastures. Our study results identify F. valesiaca and T. sipyleus as indicator species of vegetation suppression in condition assessments of degraded steppe rangelands.  相似文献   

3.
In view of the repeatedly reported overstocking of the high-altitude pastures on Al Jabal al Akhdar, northern Oman, plant species abundance, cover and frequency, and herbaceous mass yield were studied in ungrazed versus heavily grazed areas of this mountain range. In addition, plant species selection by goats along a gradient of 1000–2000 m and spatial extent of pasture areas were investigated after abundant rainfall and a subsequent 6-months dry spell by means of manual observation and GPS/GIS tools.The substantially higher species diversity and herbaceous mass yield in the ungrazed area illustrate the production potential of these mountain pastures or, respectively, the biodiversity and productivity loss resulting from continuous grazing. The concentration of goats' selection on only a dozen herbaceous and ligneous species favours pasture encroachment with poisonous shrubs such as Nerium mascatense in the lower and Dodonaea viscosa in the higher altitudes. Given the spatially limited extent of pasture areas, these are exposed to high stocking rates. Therefore, grazing and feeding schemes need to be developed which reduce livestock pressure on the pastures, taking into account local property rights, herding skills and the recovery potential of the vegetation, which heavily depends on unpredictable rainfall events.  相似文献   

4.
Esophageally fistulated goats were released in a microphyll desert scrub habitat with 14.6% or 46.2% aerial cover of Atriplex canescens (induced by removal of all shrubs except A. canescens, with livestock grazing exclusion for 10 years) to determine the seasonal forage species selected by the goats. The shrub removal strongly influenced the goats’ feeding habits. The goats grazing the Atriplex-dominated site consumed 4.5 times more A. canescens than the goats on the untreated (control) pasture during all seasons. Shrubs were used heavily during all seasons by goats in both pastures, with higher percentages (75.5–82.8%) in the diets of goats grazing the control pasture than in the diets of goats grazing the Atriplex-dominated area (62.5–68.5%). No differences were found between seasons. The goats in the Atriplex-dominated pasture ate more grass than the goats grazing the control area and used more perennial graminoids during the summer (15.0%) and spring (18.3%) than the goats on the control area (6.0–7.0%). Forbs were an important component of diets. It was concluded that the successful revegetation of the treated pasture affected the goats’ feeding strategy, with an increase in the use of A. canescens, forbs and grasses in all seasons.  相似文献   

5.
Grassland of Inner Mongolia, the main grassland region of China and part of the Eurasia Steppe that stretches from East China to Hungary, is among the most seriously degraded grasslands in China. Previous studies on causes of grassland degradation in this region focused primarily on anthropogenic activities, such as rapid development, ranching, agricultural activities, and mining for mineral resources. Few studies have examined plant interactions during the processes of grassland degradation. In this study, using the thermal-desorption cold trap/gas chromatography/mass spectrometer technique (TCT/GC/MS) we examined the effects of volatile organic compounds (VOCs) of Artemisia frigida on the seed germination and seedling growth of 4 common grass species, Melitotus suaveolens, Sorghum sudanense, Elymus dahuricus and Agropyron cristatum, in the Inner Mongolian pastures. We found that the major constituents of the VOCs from natural A. frigida were 1,8-cineole, camphene, (E)-3-hexen-1-ol acetate, α-terpineol, β-Terpineol, (R)-(−)-p-Menth-1-en-4-ol, p-cymene, and camphor, whose relative content accounted for 96.0% of the 22 compounds identified for natural A. frigida. The content and amount of these VOCs varied when A. frigida was damaged artificially. The VOCs from A. frigida significantly decreased the seed germination and seedling growth of all the tested plant species. Our finding that artificially damaged plants of A. frigida released different types and amount of VOCs from undamaged ones under laboratory conditions indicate that grazing activity on natural pastures may influence the type and amount of VOCs released from A. frigida. However, more research is needed under field conditions to draw a conclusion if grazing activity has similar impacts on release of VOCs as under laboratory conditions.  相似文献   

6.
Restoration treatments are based on the largely untested notion that desired recovery of plant communities following disturbance wouldn’t occur in the absence of active intervention. We identified rate of short-term (10 year) floristic changes following removal of plant functional groups in Wyoming big sagebrush plant communities in 1999-2005 and 2008. Treatments imposed on 6 × 6 m plots were: 1) removal of all plant functional groups, 2) perennial grass removal, 3) shrub removal and 4) control. Our data suggest recovery of the shrub component on shrub removal plots could take decades. Similarly, perennial grass cover and density on perennial grass removal plots was less than half that of unaltered plots 10 years after treatment. When all functional groups were removed, cover of annual forbs, annual grasses, and shrubs returned to unaltered levels within ten years or less. Perennial forbs were unaffected (p > 0.05) by treatment. The fact that natural recovery of some components occurred within a relatively short post-disturbance time interval (i.e. <10 years) suggests that intervention may not be necessary for some functional groups. Restoring shrubs in areas dominated by perennial grasses may require targeted reductions of competing perennial grasses. Conversely, shrub dominance may limit perennial grass re-establishment.  相似文献   

7.
Starting in 2005, we examined differences in vegetation for three consecutive years across an airport fence that separated heavily grazed areas from areas in which grazing had been excluded for 24 years in Mandalgobi, Mongolia. We performed repeated-measures analysis separately on two community types (dominated by Allium polyrrhizum and Achnatherum splendens, respectively) to compare the effects of fencing and year on the cover of different plant functional types. There was a significant fence × year interaction for grass cover in the Allium type (but not the Achnatherum type), due to greater cover of grasses inside the fence only when rainfall was sufficient during the growing season. The effect of grazing exclusion on perennial forb cover was confounded by a significant fence × year interaction in both types. In 2007, perennial forbs were found outside the fence, but had almost disappeared inside the fence, resulting in this interaction. Annual forbs only had much greater cover values inside the fence than outside in 2006, also resulting in a significant fence × year interaction in both community types. This study thus suggests that the high rainfall variability in arid and semi-arid rangelands may modify the effects of long-term exclosure on vegetation.  相似文献   

8.
Due to the difficult logistics in the extreme high elevation regions over the Himala-yas and Tibetan Plateau, the observational meteorological data are very few. In 2003, an automatic weather station was deployed at the northeastern saddle of Mt. Nyainqentanglha (NQ) (30°24′44.3″ N, 90°34′13.1″ E, 5850 m a.s.l.), the southern Tibetan Plateau. In 2005, another station was operated at the East Rongbuk Glacier Col (28°01′0.95″ N, 86°57′48.4″ E, 6523 m a.s.l.) of Mt. Qomolangma. Observational data from the two sites have been com-pared with the reanalysis data from the National Centers for Environmental Predic-tion/National Center for Atmospheric Research (NCEP/NCAR), reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayas/Tibetan Plateau region. The reanaly-sis data can capture much of the synoptic-scale variability in temperature and pressure, al-though the reanalysis values are systematically lower than the observation. Furthermore, most of the variability magnitude is, to some degree, underestimated. In addition, the weather event extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one day ahead of the observational data on Mt. Qomolangma, while on Mt. NQ it occurs basically in the same day.  相似文献   

9.
Intensive grazing in spring–summer has been responsible for environmental degradation of the Gurbantunggut Desert in recent years. The coverage of plants and biological crusts, sand surface stability and physicochemical characteristics of soil on the dune surface were conducted in 2002 (winter grazing) and 2005 (spring–summer grazing). The results showed that over 80% of the total area of the dune surface was covered by well-developed biological crusts and plants in 2002, when the interdune and middle to lower part of dune slopes were stabilized and only the crest had 10–40 m wide mobile belt. Affected by spring–summer grazing in 2005, over 80% of the total cover of biological crust was destructed and the plant coverage only reached 1/5 of that in 2002, especially the ephemeral plant cover had a great change. The value of sand transport potential in 2005 only reached 1/3 of that in 2002, but the total surface activity in 2005 was 1.6 times stronger than that in 2002. Meanwhile the mobile area began to expand from the dune top to the whole dune surface following spring–summer grazing. Compared with 2002, medium sand content of the dune surface soil increased by 13.9%, while that of fine and very fine sands decreased by 7.4% and 8.0% respectively in 2005 and the soil organic matter in 2005 was only about 1/2 of that in 2002. It is obvious that the presence of snow cover and frozen soil in winter could avoid the surface structure destruction in winter, while spring–summer grazing made excessive damage to biologic crusts and ephemeral plants. Spring is the main windy season in Gurbantunggut Desert and therefore intensive activity of dune surface occurred following spring–summer grazing, which led to a great loss of fine sand and organic matter. It can be seen that grazing season have a significant influence on the sustainable development of the desert ecosystem in Northwest China.  相似文献   

10.
This study was designed to test hypotheses about the combined effects of short-term, seasonal grazing with seasonal drought, fire, and carbon enrichment on soil microarthropod communities in a Chihuahuan Desert grassland. The study was conducted in eighteen 0.5 ha plots following three consecutive years of treatment: six plots intensively grazed in summer, six in winter, and six not grazed. There was no difference in perennial grass cover on the summer-grazed and winter-grazed plots. Intensive seasonal grazing had no effect on the abundance and community composition of soil microarthropods. Within each plot there were six subplots: summer rain-out, winter rain-out, burned, glucose amendment, rain-out control and burn-glucose control. Fire and carbon enrichment had no significant effect on soil microarthropod abundance or community composition. The average number of microarthropods ranged from 8915 ± 1422 m−2 in the ungrazed, unburned plots to 7175 ± 1232 m−2 in the winter-grazed, unburned plots. Microarthropod densities in the glucose-amended plots were 8917 ± 4902 m−2 in the winter-grazed plots and 10,731 ± 863 m−2 in the glucose-amended, summer-grazed subplots.The prostigamatid mite, Tydeus sp., was the most abundant microarthropod taxon in all treatment plots.  相似文献   

11.
Intensive grazing in spring–summer has been responsible for environmental degradation of the Gurbantunggut Desert in recent years. The coverage of plants and biological crusts, sand surface stability and physicochemical characteristics of soil on the dune surface were conducted in 2002 (winter grazing) and 2005 (spring–summer grazing). The results showed that over 80% of the total area of the dune surface was covered by well-developed biological crusts and plants in 2002, when the interdune and middle to lower part of dune slopes were stabilized and only the crest had 10–40 m wide mobile belt. Affected by spring–summer grazing in 2005, over 80% of the total cover of biological crust was destructed and the plant coverage only reached 1/5 of that in 2002, especially the ephemeral plant cover had a great change. The value of sand transport potential in 2005 only reached 1/3 of that in 2002, but the total surface activity in 2005 was 1.6 times stronger than that in 2002. Meanwhile the mobile area began to expand from the dune top to the whole dune surface following spring–summer grazing. Compared with 2002, medium sand content of the dune surface soil increased by 13.9%, while that of fine and very fine sands decreased by 7.4% and 8.0% respectively in 2005 and the soil organic matter in 2005 was only about 1/2 of that in 2002. It is obvious that the presence of snow cover and frozen soil in winter could avoid the surface structure destruction in winter, while spring–summer grazing made excessive damage to biologic crusts and ephemeral plants. Spring is the main windy season in Gurbantunggut Desert and therefore intensive activity of dune surface occurred following spring–summer grazing, which led to a great loss of fine sand and organic matter. It can be seen that grazing season have a significant influence on the sustainable development of the desert ecosystem in Northwest China. Foundation: National Basic Research Program of China, No.2009CB421303; National Natural Science Foundation of China, No.40771032; National Science Supporting Program, No.2007BAC17B03 Author: Wang Xueqin (1964–), Ph.D and Associate Professor, specialized in aeolian sand geomorphology, desertification and its control.  相似文献   

12.
In the last decade, there has been increasing interest in climate change, pasture degradation and its driving forces, and innovations in nomadic pastoralism on the Tibetan Plateau. However, little is known of indigenous strategies of adaptation to pasture degradation, which limits the effectiveness of adaptation strategies planned by local government. This paper analyzes nomads’ strategies of adaptation to pasture degradation on the basis of a field survey of three townships of Dalag County in the source regions of the Yangtze and Yellow rivers. Pastures there have evidently degraded, with pastures in Wasai mainly in a state of slight or medium degradation and those in Manzhang and Jianshe in a state of medium or severe degradation. With the degradation of pasture, the grazing time is reduced, which affects the livelihoods of nomads. Although the Four-Package Project has commenced in this region, there is still severe fodder shortage in winter and spring. The traditional hay storage strategy does not work because of pasture degradation, and few nomads establish fenced and artificial pastures. Therefore, nomads have employed other strategies, such as renting pasture, providing supplementary feed, and diversifying their livelihoods. Local strategies taken by nomads can provide valuable insights into ecological restoration and livelihood improvement in the region and suggest changes to means promoted by local government. It is necessary to seek new means that combine the best aspects of nomadic pastoralism with modern stockbreeding technologies to help nomads adapt to pasture degeneration and improve their livelihoods.  相似文献   

13.
Grazing effects on patchy dryland vegetation in northern Patagonia   总被引:1,自引:0,他引:1  
In this study the spatial patterns and dynamics of vegetation patches along a grazing gradient in the steppe ofLarrea divaricataandStipaspp. in NE Patagonia (Argentina) are described. A general effect of grazing is the reduction of total plant cover resulting from the decrease in cover of perennial grasses (Stipa speciosa, Poa ligularis, Stipa tenuis) and some tall shrubs (Chuquiraga hystrix, Bougainvillea spinosa, Lycium chilense). Dwarf shrubs (Nassauvia fueguianaandJunellia seriphioides) increase their cover under medium and/or high grazing pressures. Plant species are spatially grouped into patches which alternate with areas of bare soil. Eleven types of vegetation patch differing in the dominant plant functional type or species, floristic richness and size were identified with different relative frequency along the grazing gradient. Based on these results, it is postulated that grazing forces the replacement of large patches dominated by tall shrubs with high species richness, byLarrea divaricatapatches or small dwarf shrub patches with low species richness and the extinction of grass patches. This results from: (1) disruption of local balances of species deletions and additions; (2) fragmentation of large patches; and (3) formation of new vegetation patches. These changes lead to differing plant spatial organization and heterogeneity along the grazing gradient which may be described by characteristic arrays of vegetation patches.  相似文献   

14.
The objective of this study was to clarify whether the changes in percent cover of plant functional types (i.e., life forms and growth forms) along a grazing gradient reflect the livestock number, which would reinforce the reliability of using a grazing gradient design and improve the management of rangeland. We selected two livestock camps that for many years have had different numbers of livestock, with approximately six times more sheep-equivalents at site 1 than at site 2. Vegetation was sampled in 10 quadrats on five transects along the grazing gradient at each site. In each quadrat, we recorded percent cover of each plant species. Our findings suggested that vegetation changes along the grazing gradient under different livestock numbers were characterized by changes in the cover of life forms: perennial species were replaced by annual species near the camps (10–50 m). However, we did not find growth form change that reflected the difference in the number of livestock.  相似文献   

15.
In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments.  相似文献   

16.
Soils of arid regions of Central Asia contain salts of different types that may differentially affect seed germination and plant development. We studied effect of NaCl, Na2SO4, 2NaCl + KCl + CaCl2 and 2Na2SO4+K2SO4+MgSO4 on germination of Kochia prostrata and Kochia scoparia seeds under a range of concentrations from 0.5 to 5% and at two constant temperature regimes +22 °C and +6 °C. The observed salt tolerance limit of germination at constant temperature +22 °C for both species was 5-6%, while at low temperature (+6 °C) this limit was 2%. The salt tolerance of young plants (before flowering) was 3% for NaCl. Low concentrations of sulfuric and mixed salts had a stimulating effect on seed germination in K. prostrata. Despite similarity of salt-tolerance limits the studied species showed a significant difference in seed recovery ability, i.e. the ability of ungerminated, salt-soaked seeds to germinate after transfer to fresh water. K. scoparia demonstrated a full germination recovery after seed transfer to distilled water while K. prostrata showed only a partial recovery.  相似文献   

17.
Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.  相似文献   

18.
To examine the influence of buffelgrass land conversion and pasture management on native species diversity and regeneration patterns, we describe community attributes and population structure in four different active pastures in thornscrub vegetation from eastern Sonora, Mexico. We compare a relatively undisturbed thornscrub community with a contiguous five years old active pasture, to identify species able to regenerate under current management practices. Buffelgrass conversion has a significant influence on species diversity and other community attributes. Active pastures have lower species diversity, crown cover and basal area of native species than the studied native thornscrub. An active pasture subjected to heavy grazing and without management of the thorny legume, Acacia cochliacantha, showed the lower species diversity and an almost monospecific stand of this legume. It is likely that the reduction in species diversity is caused by the conversion process, inadequate management and regeneration barriers that limit seedling establishment in active pastures. Our data recorded eight native species (13%) that were able to regenerate in active pastures. However, the great majority of native species were unable to regenerate under pastures. This study shows that under current management, active buffelgrass pastures maintain only a small fraction of native species with regenerating populations in the thornscrub.  相似文献   

19.
In arid environments, soil fertility exhibits a high degree of spatial and temporal heterogeneity, which results from high climatic variability seasonally and heterogeneous plant distribution. However, because most desert areas have been altered by human activities, heterogeneous fertility would originate from grazing or logging activities. We evaluated spatial and temporal heterogeneity of soil fertility in cattle-excluded sites under and outside woody plant cover (Prosopis flexuosa and Larrea divaricata), and in sites disturbed by tree removal during wet and dry season in Ñacuñán Biosphere Reserve (Central Monte desert of Argentina). Soil organic matter, fulvic acids, bioavailable organic matter, and nitrate were lower outside plant canopy (8.9 mg g?1, 0.03 mg g?1, 8.2 mg g?1, and 4.17 mg kg?1, respectively). Total N, humic acids, and abundance of microbial functional groups did not show differences among sites. Most parameters differed between seasons, tending to be higher in the wet season. Overall soils of Ñacuñán Reserve are characterized by: a) more homogenous spatial pattern than expected from woody plant presence; b) very heterogeneous temporal pattern; and c) after two years, tree removal does not seem to induce infertile soil formation.  相似文献   

20.
Camel grazing plays a crucial role in the desert ecosystems of the UAE. In this study, we compare areas grazed by small antelope (Al Maha Resort – the AMR) with areas grazed by both camels and small antelope (Dubai Desert Conservation Reserve – the DDCR). A total of 126 plots were selected during the growing season 2006/07 on three soil substrates: gravel plains, sand flats and sand dunes. In each plot, several vegetation parameters were assessed: density, frequency, percent cover and diversity indices. The replacement of camels with wild antelope has significantly increased the number of species on gravel plains, vegetation density on sand dunes and diversity indices on both sand flats and sand dunes, but significantly decreased plant cover on sand flats and sand dunes. The increase in species diversity in the AMR was attributed to moderate grazing by antelope. Replacement of camels by antelope in the AMR has resulted in change in plant community composition of the three substrate types. Species recovered after protection from camel grazing are palatable, especially for camels, except Heliotropium kotschyi and Aerva javanica. The absence of most of the palatable species from the DDCR was attributed to both selective foraging and overgrazing by camels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号