首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Droughts in Moldova were evaluated using meteorological data since 1955 and a long time series (1891?C2009). In addition, yields for corn (Zea mays L.), a crop widely grown in Moldova, were used to demonstrate drought impact. The main aim is to propose use of the S i (S i-a and S i-m) drought index while discussing its potential use in studying the evolution of drought severity in Moldova. Also, a new multi-scalar drought index, the standardized precipitation?Cevapotranspiration index (SPEI), is tested for the first time in identifying drought variability in Moldova while comparing it with the commonly used standardized precipitation index (SPI). S i-m, SPI, SPEI, and S i-a indices show an increasing tendency toward more intensive and prolonged severely dry and extremely dry summer months. Drought frequency increased through six decades, which included long dry periods in the 1990s and 2000s. Moreover, the evolution of summer evapotranspiration recorded a positive and significant trend (+3.3?mm/year, R 2?=?0.46; p????0.05) between 1955 and 2009. A yield model based on the S i-a agricultural index and historic corn yields explained 43% of observed variability in corn production when drought occurred in May, July, and August. Increasing severity of the 20-year drought during the critical part of the growing season is raising corn yield losses, as net losses have so far exceeded net gains.  相似文献   

2.
Monthly precipitation data of 42 rain stations over the Pearl River basin for 1960–2005 were analyzed to classify anomalously wet and dry conditions by using the standardized precipitation index (SPI) and aridity index (I) for the rainy season (April–September) and winter (December–February). Trends of the number of wet and dry months decided by SPI were detected with Mann-Kendall technique. Furthermore, we also investigated possible causes behind wet and dry variations by analyzing NCAR/NCEP reanalysis dataset. The results indicate that: (1) the Pearl River basin tends to be dryer in the rainy season and comes to be wetter in winter. However, different wetting and drying properties can be identified across the basin: west parts of the basin tend to be dryer; and southeast parts tend to be wetter; (2) the Pearl River basin is dominated by dry tendency in the rainy season and is further substantiated by aridity index (I) variations; and (3) water vapor flux, moisture content changes in the rainy season and winter indicate different influences of moisture changes on wet and dry conditions across the Pearl River basin. Increasing moisture content gives rise to an increasing number of wet months in winter. However, no fixed relationships can be observed between moisture content changes and number of wet months in the rainy season, indicating that more than one factor can influence the dry or wet conditions of the study region. The results of this paper will be helpful for basin-scale water resource management under the changing climate.  相似文献   

3.
Vishwas Kale 《Climate Dynamics》2012,39(5):1107-1122
This paper provides a synoptic view of extreme monsoon floods on all the nine large rivers of South Asia and their association with the excess (above-normal) monsoon rainfall periods. Annual maximum flood series for 18 gauging stations spread over four countries (India, Pakistan, Bangladesh and Nepal) and long-term monsoon rainfall data were analyzed to ascertain whether the extreme floods were clustered in time and whether they coincided with multi-decade excess monsoon rainfall epochs at the basin level. Simple techniques, such as the Cramer’s t-test, regression and Mann–Kendall (MK) tests and Hurst method were used to evaluate the trends and patterns of the flood and rainfall series. MK test reveals absence of any long-term tendency in all the series. However, the Cramer’s t test and Hurst-Mandelbrot rescaled range statistic provide evidence that both rainfall and flood time series are persistent. Using the Cramer’s t-test the excess monsoon epochs for each basin were identified. The excess monsoon periods for different basins were found to be highly asynchronous with respect to duration as well as the beginning and end. Three main conclusions readily emerge from the analyses. Extreme floods (>90th percentile) in South Asia show a tendency to cluster in time. About three-fourth of the extreme floods have occurred during the excess monsoon periods between ~1840 and 2000 AD, implying a noteworthy link between the two. The frequency of large floods was higher during the post-1940 period in general and during three decades (1940s, 1950s and 1980s) in particular.  相似文献   

4.
Trends in evaporation of a large subtropical lake   总被引:1,自引:0,他引:1  
In order to further investigate the capability of the Standardized Precipitation Index (SPI) to identify flood/drought events, monthly precipitation data from 26 precipitation stations and monthly discharge data from four hydrological stations from 1960 to 2006 in the Minjiang River basin were used to analyze the correlations between multiple time scales of the SPI and river discharge. The SPI series that had a maximum correlation with discharge was chosen to detect flood/drought events in the basin, and the results were compared to historical flood/drought events. The results indicated the following. (1) High Pearson correlations between the SPI and discharge were identified at shorter time scales (1 to 3 months), and the maximum correlation was found on the time scale of 2 months. (2) Five floods among the six largest historical flood events in the Minjiang River basin were identified with the 2-month SPI, but the SPI does have shortcomings in identifying more general floods. The SPI also identified major drought events that were consistent with historical data. This demonstrates that the 2-month SPI is an effective indicator for the identification of major flood/drought events in the Minjiang River basin.  相似文献   

5.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

6.
This paper presents the methodology for assessment of drought episodes and their potential effects on winter and spring cereal crops in the Czech Republic (in the text referred to as Czechia). Historical climate and crop yields data for the period of 47 years (1961–2007) have been integrated into an agrometeorological database. The drought episodes were determined by three methods: according to the values of the standardized precipitation index (SPI), percentage of long-term precipitations (r), and on the basis of the Ped drought index (S i). Consequently, the combined SPI, S i, and r indices have been used as tools in identification of the severity, frequency, and extent of drought episodes. Additionally, the paper also presents the S i drought index and its potential use for real-time monitoring of spatial extension and severity of droughts in Czechia. The drought risk to crops was analyzed by identifying the relationships between the fluctuation of crop yields and drought index (S i) based on the multiple regression analysis with stepwise selection. In general, models explain that a high percentage of the variability of the yield is due to drought (more than 45% of yield variance).  相似文献   

7.
The aim of this article is to present statistical forecasting models concerning the dynamics of Artemisia pollen seasons in Wroc?aw, including the start and end, the date of maximum pollen concentration and seasonal pollen index (SPI). For statistical evaluation, use was made of aerobiological and meteorological data from the last 10 years (2002–2011). Based on this data, agroclimatic indicators, i.e. crop heat units (CHUs), were determined for various averaging periods. The beginning of the Artemisia pollen season in the studied time period, on average, took place on 23 June. Its length usually varied between 26 and 45 days, and maximum daily concentrations occurred between 31 July and 18 August. It was found that the beginning of the pollen season depends, above all, on the values of CHUs and photothermal unit (PTU) (p?<?0.05) in the period from March to June, for various thermal thresholds. The date of maximum daily concentration correlates with sunshine duration, PTU and air temperature for June and July (p?<?0.05). On the other hand, SPI is connected with thermal variables, i.e. average, maximum and minimum air temperatures and CHUs and heliothermal unit (HTU) for July (p?<?0.05) and the beginning of spring. Based on the correlation analysis and the chosen variables, regression models for the beginning date of Artemisia pollen season and SPI were prepared, which were then verified by using leave-one-out cross-validation. A better fit between modelled and actual values was found for the analysis concerning the season start date than for the SPI.  相似文献   

8.
MLP-based drought forecasting in different climatic regions   总被引:1,自引:0,他引:1  
Water resources management is a complex task and is further compounded by droughts. This study applies a multilayer perceptron network optimized using Levenberg–Marquardt (MLP) training algorithm with a tangent sigmoid activation function to forecast quantitative values of standardized precipitation index (SPI) of drought at five synoptic stations in Iran. The study stations are located in different climatic regions based on De Martonne aridity index. In this study, running series of total precipitation corresponding to 3, 6, 9, 12, and 24?months were used and the corresponding SPIs were calculated: SPI3, SPI6, SPI9, SPI12, and SPI24. The multilayer perceptrons (MLPs) for SPIs with the 1-month lead time forecasting, were tested and validated. Four different input vectors were considered during network development. In the first model, MLP constructed by importing antecedent SPI with 1-, 2-, 3-, and 4-month time lags and antecedent precipitation with 1- and 2-month time lags (MLP1). Addition of antecedent North Atlantic Oscillation or antecedent Southern Oscillation Index with 1-month time lag or both of them to MLP1 led to MLP2, MLP3, and MLP4, respectively. The MLP models were evaluated using the root mean square error (RMSE) and the coefficient of determination (R 2). The results showed that MLP4 had a higher prediction efficiency than the other MLPs. The more satisfactory results of RMSE and R 2 values of MLP4 for 1-month lead time for validation phase were equal to 0.35 and 0.92, respectively. Also, results indicated that MLPs can forecast SPI24 and SPI12 more accurately than the other SPIs.  相似文献   

9.
Ground-based GPS and weather stations time series for the period 2010–2012 of precipitable water vapor (PWV), relative humidity (RH), and surface temperature (T) of half-hourly resolution are analyzed to demonstrate their value for dynamical analyses and weather forecasting. Three sample stations in the USA from the SoumiNet network are considered, which have rather continuous data for the last 3 years and a few missing values. Results for the three stations reveal the following features: (1) PWV time behavior is dominated by the annual cycle superimposed on high-frequency fluctuations with missing daily cycle, indicating a prevailing large-scale transport source of precipitable water at these sites; (2) RH is characterized by the daily cycle and high-frequency variability, while the annual cycle is missing; (3) T mainly varies following the annual and diurnal cycles; and (4) all variables show similar scaling properties of their variance spectra, S(f)?~?f β , with a high-frequency regime of red noise type scaling (β?~?2) up to a day and long-term persistence beyond a week (β?~?0.5), with a week-long frequency interval of transition. Detrended fluctuation analysis of relative humidity indicates a clear long-term persistence scaling covering more than three decades. Implications of these findings on weather forecasting and climate modeling are discussed.  相似文献   

10.
干旱具有发生频率高、持续时间长、波及范围广的特点。而干旱预报为科学地进行防旱抢险提供了决策支持。选取反映不同类型干旱的指标,即标准化降雨指标(SPI)、标准化土壤湿度指标(SSWI)和标准化径流指标(SRI),通过SWAT模型和带有时滞的灰色关联判断了各干旱之间的时滞。以陆浑水库控制流域为例进行了分析,结果表明:SWAT模型在该流域有很好的适用性,1975—2009年间发生各类干旱的次数在增加,且变率上从气象干旱、农业干旱到水文干旱有所增加,同时不同类型干旱之间表现出了一定的时滞关系,气象干旱对农业干旱的响应时间为1个月;水文干旱对气象干旱的响应时间为4个月;水文干旱对农业干旱的响应时间为2个月。  相似文献   

11.
This paper analyzes the spatial dependence of annual diurnal temperature range (DTR) trends from 1950–2004 on the annual climatology of three variables: precipitation, cloud cover, and leaf area index (LAI), by classifying the global land into various climatic regions based on the climatological annual precipitation. The regional average trends for annual minimum temperature (T min) and DTR exhibit significant spatial correlations with the climatological values of these three variables, while such correlation for annual maximum temperature (T max) is very weak. In general, the magnitude of the downward trend of DTR and the warming trend of T min decreases with increasing precipitation amount, cloud cover, and LAI, i.e., with stronger DTR decreasing trends over drier regions. Such spatial dependence of T min and DTR trends on the climatological precipitation possibly reflects large-scale effects of increased global greenhouse gases and aerosols (and associated changes in cloudiness, soil moisture, and water vapor) during the later half of the twentieth century.  相似文献   

12.
Regional extreme value analyses of drought characteristics provide information on probabilistic nature of drought occurrence, viewed as an essential tool in drought mitigation and planning. In this paper, L-moments are used to investigate the regional characteristics and probabilistic behavior of drought severity levels, represented by the Standardized Precipitation Index (SPI) annual minima (the minimum monthly SPI value). Rainfall data of 3, 6, 12, and 24 month time scales are investigated. A regional watershed in southwestern Iran is used as a case study area. The semi-arid nature of the study area requires appropriate selection of rainfall data. The boxplot approach is used to select those months with adequate data time series for the SPI analysis. Appropriateness of the suggested data time series is discussed in the context of the research by Wu et al. (2007). Based on the results, all of the suggested time scales are found appropriate for SPI investigations. For each time scale of interest regional homogeneity is evaluated and the best regional/sub-regional probability distribution function is selected. Regional quantiles are estimated for different time scales and their variability with respect to return period is discussed.  相似文献   

13.
Using the Objectively Analyzed air?Csea Fluxes dataset (and also the National Oceanography Centre Southampton Flux Dataset v2.0), we examined both the annual mean climatology and trend of net air?Csea surface heat flux (Q net) for 1984?C2004 over the North Pacific and North Atlantic oceans (10°N?C50°N). The annual mean Q net climatology shows that oceans obtain the positive Q net over much of the North Pacific and North Atlantic oceans. Exceptions are the regions of western boundary currents (WBCs) including the Kuroshio and its extension off Japan and the Gulf Stream off the USA and its extension, where oceans release lots of heat into the atmosphere, mainly ascribed to the large surface turbulent heat loss. The statistically significant negative Q net trends occurred in the WBCs, while the statistically significant positive Q net trends appeared in the central basins of Northern Subtropical Oceans (CNSOs) including the central basin of Northern Subtropical Pacific and the central basin of Northern Subtropical Atlantic. These indentified Q net trends, which are independent of both El Ni?o-Southern Oscillation (ENSO) and ENSO Modoki but closely related to global warming forcing, are predominately due to the statistically significant surface latent heat (LH) trends. Over the WBCs, the positive LH trends are mainly induced by the sea surface temperature increasing, indicating the ocean forcing upon overlying atmosphere. In contrast, over the CNSOs, the negative LH trends are mainly caused by the near-surface air specific humidity increasing, indicative of an oceanic response to overlying atmospheric forcing.  相似文献   

14.
The day-to-day monitoring of the 2011 severe drought in China   总被引:1,自引:0,他引:1  
Dry/wet condition has a large interannual variability. Decision-makers need to know the onset, duration, and intensity of drought, and require droughts be monitored at a daily to weekly scale. However, previous tools cannot monitor drought well at this short timescale. The Palmer Drought Severity Index has been found dissatisfactory in monitoring because of its complexity and numerous limitations. The Standardized Precipitation Index (SPI) always asks for a timescale, and precipitation is averaged over the period of the scale. Because of this, the SPI cannot be used for short scales, e.g., several days, and what it tells is the overall drought situation of the period. The weighted average of precipitation (WAP) developed by Lu (Geophys Res Lett 36:L12707, 2009) overcomes the deficiency of the SPI; it does not require a timescale, and can provide the drought (and flood) extent of each day. Therefore, the WAP can monitor drought at scales from daily to weekly, monthly, and any longer scale, and is really “flexible and versatile for all timescales”. In this study, the standardized WAP (SWAP) is used to monitor the 2011 drought over China. Drought swept the country during the year from north to south and from east to west. In spring, a once-in-a-fifty-year drought occurred over the Yangtze River basin and the southern region, causing serious shortage of drinking water for people and livestock, as well as tremendous losses in agriculture and the shipping industry. Results show that the SWAP, with its monthly mean plots, can well reproduce the seasonal shift of the 2011 drought across the country. The animation of daily plots demonstrates that the SWAP would have been able to monitor the day-to-day variation of the spring drought around the Yangtze River basin. It can provide the details of the drought, such as when the drought emerged over the region, how long it maintained there (though drought area may move back and forth with extension and contraction of the area), and when the drought relieved over the basin.  相似文献   

15.
Drought is a complex natural hazard that is poorly understood and difficult to assess. This paper describes a VIC–PDSI model approach to understanding drought in which the Variable Infiltration Capacity (VIC) Model was combined with the Palmer Drought Severity Index (PDSI). Simulated results obtained using the VIC model were used to replace the output of the more conventional two-layer bucket-type model for hydrological accounting, and a two-class-based procedure for calibrating the characteristic climate coefficient (K j ) was introduced to allow for a more reliable computation of the PDSI. The VIC–PDSI model was used in conjunction with GIS technology to create a new drought assessment index (DAI) that provides a comprehensive overview of drought duration, intensity, frequency, and spatial extent. This new index was applied to drought hazard assessment across six subregions of the whole Loess Plateau. The results show that the DAI over the whole Loess Plateau ranged between 11 and 26 (the greater value of the DAI means the more severe of the drought hazard level). The drought hazards in the upper reaches of Yellow River were more severe than that in the middle reaches. The drought prone regions over the study area were mainly concentrated in Inner Mongolian small rivers, Zuli and Qingshui Rivers basin, while the drought hazards in the drainage area between Hekouzhen–Longmen and Weihe River basin were relatively mild during 1971–2010. The most serious drought vulnerabilities were associated with the area around Lanzhou, Zhongning, and Yinchuan, where the development of water-saving irrigation is the most direct and effective way to defend against and reduce losses from drought. For the relatively humid regions, it will be necessary to establish the rainwater harvesting systems, which could help to relieve the risk of water shortage and guarantee regional food security. Due to the DAI considers the multiple characteristic of drought duration, intensity, frequency, and spatial extent, and because it is based on the VIC–PDSI model and GIS technologies, the DAI could provide some new way on directly comparing the drought hazards over different regions during a long-term period. The result of this study may be useful to decision makers when formulating drought management policies to alleviate the risk of water shortages and guarantee regional food security.  相似文献   

16.
We present a dynamical downscaling of the Arctic climatology using a high-resolution implementation of the Polar Weather Research and Forecasting, version 3.6 (WRF3.6) model, with a focus on Arctic cyclone activity. The study period is 1979–2004 and the driving fields are data from the Hadley Centre Global Environmental Model, version 2, with an Earth System component (HadGEM2-ES) simulations. We show that the results from the Polar WRF model provide significantly improved simulations of the frequency, intensity, and size of cyclones compared with the HadGEM2-ES simulations. Polar WRF reproduces the intensity of winter cyclones found in ERA-Interim, the global atmospheric reanalysis produced by the European Centre for Medium-range Weather Forecasts (ECMWF), and suggests that the average minimum central pressure of the cyclones is about 10?hPa lower than that derived from HadGEM2-ES simulations. Although both models underestimate the frequency of summer Arctic cyclones, Polar WRF simulations suggest there are 10.5% more cyclones per month than do HadGEM2-ES results. Overall, the Polar WRF model captures more intense and smaller cyclones than are obtained in HadGEM2-ES results, in better agreement with the ERA-Interim reanalysis data. Our results also show that the improved simulations of Arctic synoptic weather systems contribute to better simulations of atmospheric surface fields. The Polar WRF model is better able to simulate both the spatial patterns and magnitudes of the ERA-Interim reanalysis data than HadGEM2-ES is; in particular, the latter overestimates the absorbed solar radiation in the Arctic basin by as much as 30?W?m?2 and underestimates longwave radiation by about 10?W?m?2 in summer. Our results suggest that the improved simulations of longwave and solar radiation are partly associated with a better simulation of cloud liquid water content in the Polar WRF model, which is linked to improvements in the simulation of cyclone frequency and intensity and the resulting transient eddy transports of heat and water vapour.  相似文献   

17.
The equilibrium climate response to anthropogenic forcing has long been one of the dominant, and therefore most intensively studied, uncertainties in predicting future climate change. As a result, many probabilistic estimates of the climate sensitivity (S) have been presented. In recent years, most of them have assigned significant probability to extremely high sensitivity, such as P(S?>?6C)?>?5%. In this paper, we investigate some of the assumptions underlying these estimates. We show that the popular choice of a uniform prior has unacceptable properties and cannot be reasonably considered to generate meaningful and usable results. When instead reasonable assumptions are made, much greater confidence in a moderate value for S is easily justified, with an upper 95% probability limit for S easily shown to lie close to 4°C, and certainly well below 6°C. These results also impact strongly on projected economic losses due to climate change.  相似文献   

18.
The direction normal to the Earth spherical (or ellipsoidal) surface is not vertical (called deflected vertical) since the vertical direction is along the true gravity g (= igλjgφkgz). Here, (λ, φ, z) are (longitude, latitude, depth), and (i, j, k) are the corresponding unit vectors. The spherical (or ellipsoidal) surfaces are not horizontal surfaces (called deflected-horizontal surfaces). The most important body force g (true gravity) has been greatly simplified without justification in oceanography to the standard gravity (-g0k) with g0 = 9.81 m/s2. Impact of such simplification on ocean dynamics is investigated in this paper using the Ekman layer model. In the classical Ekman layer dynamic equation, the standard gravity (-g0k) is replaced by the true gravity g(λ, φ, z) with a constant eddy viscosity and a depth-dependent-only density ρ(z) represented by an e-folding near-inertial buoyancy frequency. New Ekman spiral and in turn new formulae for the Ekman transport are obtained for ocean with and without bottom. With the gravity data from the global static gravity model EIGEN-6C4 and the surface wind stress data from the Comprehensive Ocean-Atmosphere Data Set (COADS), large difference is found in the Ekman transport using the true gravity and standard gravity.  相似文献   

19.
Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not well understood. We present a new statistical study of all named TCs in this region during the period 2000-2006 using a second-generation partial least squares (PLS) regression technique. The results show that the lower-layer (between 850 hPa and 10 m above the sea surface) wind shear is more important than the commonly analyzed deep-layer shear (between 200 and 850 hPa) for changes in TC intensity during the TC intensification period. This relationship is particularly strong for westerly low-level shear. Downdrafts induced by the lower-layer shear bring low θ e air into the boundary layer from above, significantly reducing values of θ e in the TC inflow layer and weakening the TC. Large values of deep-layer shear over the ocean to the east of the Philippine Islands inhibit TC formation, while large values of lower-layer shear over the central and western North Pacific inhibit TC intensification. The critical value of deep-layer shear for TC formation is approximately 10 ms-1 , and the critical value of lower-layer shear for TC intensification is approximately ±1.5 ms-1 .  相似文献   

20.

A comprehensive risk management strategy for dealing with drought should include both short-term and long-term planning. The objective of this paper is to present an early warning method to forecast drought using the Standardised Precipitation Index (SPI) and a non-homogeneous Markov chain model. A model such as this is useful for short-term planning. The developed method has been used to forecast droughts at a number of meteorological monitoring stations that have been regionalised into six (6) homogenous clusters with similar drought characteristics based on SPI. The non-homogeneous Markov chain model was used to estimate drought probabilities and drought predictions up to 3 months ahead. The drought severity classes defined using the SPI were computed at a 12-month time scale. The drought probabilities and the predictions were computed for six clusters that depict similar drought characteristics in Victoria, Australia. Overall, the drought severity class predicted was quite similar for all the clusters, with the non-drought class probabilities ranging from 49 to 57 %. For all clusters, the near normal class had a probability of occurrence varying from 27 to 38 %. For the more moderate and severe classes, the probabilities ranged from 2 to 13 % and 3 to 1 %, respectively. The developed model predicted drought situations 1 month ahead reasonably well. However, 2 and 3 months ahead predictions should be used with caution until the models are developed further.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号