首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight zircon fractions from the Henderson Gneiss were analyzed from the Brevard mylonites and adjacent Inner Piedmont rocks near Rosman, North Carolina, to determine variations of U/Pb systematics of zircons in a pressure-dominated metamorphism. Substantial uranium gain occurred during zircon recrystallization and size reduction.At Rosman, the Henderson Gneiss zircons probably formed about 600 m.y. ago and now show evidence of being binary mixtures. They experienced mylonitization at about 450 m.y. ago during Taconic deformation and metamorphism in the almandine amphibolite facies. The lower intensity, upper greenschist or greenschist-amphibolite Acadian (360–390 m.y.) metamorphism and mylonitization (recrystallization) had little effect on the zircons but disturbed Rb/Sr systems.The ages of dynamic metamorphism and thrusting (450, 360–390) in the Piedmont and Blue Ridge near and along the Brevard zone at Rosman, North Carolina, agree well with the tectonic interpretations of the Valley and Ridge Taconic (ca. 470-400 m.y.) and Acadian (ca. 375-330 m.y.) clastic wedges. Intermittent thrusting, folding, and uplift rather than continuous secular uplift of the crystalline terrane seems indicated.  相似文献   

2.
Examinations of Grenville massifs in the Blue Ridge Geologic Province of Virginia and North Carolina indicate that the country rocks (∼ 1100–1450 Ma) are layered gneisses that were metamorphosed during Grenville orogenesis (∼ 1000–1100 Ma) to amphibolite to granulite facies and intruded by plutonic suites. Subsequently, the Grenville terrane was intruded by a suite of peralkaline granitic plutons (∼ 700 Ma) and progressively overlapped westward by Upper Precambrian to Cambrian sedimentary and volcanic rocks. Following deposition of Upper Precambrian and Palaeozoic rocks, the Blue Ridge Geologic Province was subjected to Taconic metamorphism (∼ 450–480 Ma) which generally increased in intensity southeastward from greenschist (chlorite grade) to upper amphibolite (sillimanite grade) facies. Large-scale late Devonian thrusting (∼ 350 Ma) along the Fries fault system and the Brevard zone-Yadkin fault system produced the present day distribution of juxtaposed Grenville massifs and Palaeozoic metamorphic zones in the Blue Ridge Geologic Province. Palinspastic restoration of the Taconic metamorphic zones to their pre-late Devonian relative positions yields an ∼ 50 km displacement on the Fries fault system near the Grandfather Mountain window and and an ∼ 80 km displacement on the Smith River allochthon farther east. Restoration of the Grenville massifs to this same palinspastic base shows that Grenville metamorphic grade decreased southeastward from the deeper granulite facies (opx + gar) to the shallower granulite facies (opx ± amp) to amphibolite facies.  相似文献   

3.
Reprocessing of the 1978–1980 COCORP Southern Appalachian seismic reflection data has produced improved images of structures related to the emplacement of the Blue Ridge–Inner Piedmont allochthon. The results enhance and extend the interpretation presented previously that the Blue Ridge and Inner Piedmont are allochthonous above a shallow, and shallow dipping, detachment that can be followed from outcrop at the Blue Ridge/Valley and Ridge transition to at least beneath the Carolina terrane. The continuity of reflections in the new images supports the interpretation that the southern Appalachian detachment is not rooted on the east side of the Inner Piedmont, but rather projects as a low-angle detachment (or zone of decoupling) to beneath the Coastal Plain. An implication of this geometry is that terranes, such as the Carolina terrane, between autochthonous North America and the Alleghanian suture beneath the Coastal Plain are detached, thin flakes.  相似文献   

4.
A thorough examination of geophysical data from the Greenland-Norwegian Sea, Eurasia Basin and southern Labrador Sea shows significant asymmetry of several parameters (basement topography adjusted for sediment loading, free-air gravity anomaly, spreading half-rate and seismicity) with respect to crustal age:
1. (1) Average zero-age depth (0–57 m.y. B.P.), depth of highest rift mountain summits, and depth to magnetic basement (10–30 km from axis of Mohns and Knipovich ridges) is less on the North American plate flanks. The zero-age depth asymmetry is 400–500 m for the Eurasia Basin (0–57 m.y. B.P.) and for Mohns Ridge (57-22 m.y. B.P.), and 150–200 m for younger Mohns Ridge crust (22-0 m.y. B.P.) and for the extinct Aegir Ridge (57-27 m.y. B.P.). There is little or no asymmetry in the Labrador Sea except near the extinct rift valley, where the east flank is 150–300 m shallower. Magnetic depth-to-source computations provide an independent confirmation of basement asymmetry: The belts 10–30 km from the axis of Mohns and Knipovich ridges are 100–150 m shallower on the west flank of these ridges. The shallower ridge flank is topographically rougher, so that average rift mountain summits are 300 m shallower on the west flanks of the Mohns-Knipovich ridges, a larger asymmetry than for average zero-age depth. The amount of topographic asymmetry is greatest near the Mohns-Knipovich bend. Asymmetry appears to be greatest for ridges oriented normal to the spreading direction, and less for oblique spreading.
2. (2) Free-air gravity anomaly asymmetries of +5 to +20 mGal ( + sign indicates west flank is more positive) are associated with topographic asymmetry at least within 10–15 m.y. of the axis of Mohns and Knipovich ridges. Gravity is reduced on the older flanks west of the extinct Mid-Labrador Ridge and east of Mohns Ridge; asymmetric crustal layer thicknesses or densities provide one possible explanation, although deep-seated sources (e.g., mantle convection), unrelated to the crust, cannot be excluded.
3. (3) Spreading half-rate was about 5–15% lower on the North American plate flanks of Mohns Ridge (57-35 m.y.) and in the Eurasia Basin (0–57 m.y.); thus the fast-spreading flank tends to produce deeper, smoother crust. However, topographic asymmetry cannot relate only to spreading-rate asymmetry, since for the young Mohns Ridge crust (<9 m.y. B.P.) faster spreading and higher topography are both associated with the west flank.
4. (4) Mid-plate seismicity is higher on the Eurasia (eastern) flank of Mohns and Knipovich ridge, but this effect may be unrelated to the other three.
The fluid-dynamical model of Stein et al. correctly explains the sense of spreading-rate asymmetry (the North American plate, moving faster over mantle, is growing more slowly). However, the other asymmetries and their causal relationships remain theoretically unexplained.  相似文献   

5.
Abstract

For the past 200?years, there have been numerous investigations and much speculation concerning the formation of the dramatic valleys of the Blue Mountains of NSW. In this paper, further evidence for the uplift and erosional history of the Blue Mountains is obtained from longitudinal river profiles, detailed mapping of the Rickabys Creek Gravel on the Lapstone Structural Complex and consideration of the topographical position of Miocene basalts. Knickpoints on the main rivers flowing east from the Great Dividing Range are identified and interpreted to be due to uplift events linked to the northward movement of the Australian continent over mantle inhomogeneities. At the Lapstone Structural Complex on the eastern range front, the occurrence of the Rickabys Creek Gravel and the nature of the over-steepened reaches on the rivers and streams crossing the Complex, suggest a more recent ongoing phase of uplift and antecedent river erosion. The Miocene basalts provide evidence of this landscape 20–15?Ma. Their locations with respect to the current rivers and ridges are interpreted to show additional evidence for recent uplift that has resulted in the formation of the Lapstone Structural Complex. It is suggested that this uplift commenced 10–5?Ma when the contemporary compressive stress field was established.
  • KEY POINTS
  • Longitudinal profiles for major rivers in the Blue Mountains are consistent with a model of initial Cretaceous uplift followed by further Cenozoic uplift associated with dynamic topography.

  • Mapping of Rickabys Creek Gravel within the Lapstone Structural Complex suggests the presence of antecedent rivers.

  • Within the Lapstone Structural Complex, stream profiles, gravels and nearby outcrops of Miocene basalts are interpreted to indicate a third phase of uplift, possibly since 10?Ma.

  相似文献   

6.
A transcontinental profile of vertical crustal movement from San Diego, California, to Meldrim (Savannah), Georgia, has been assembled from precise leveling data of the National Geodetic Survey. Assuming constant movement during the time interval between leveling and releveling surveys, rates of movement have been plotted. The overall rate of movement of the East Coast relative to the West Coast derived from leveling is opposite in sign to the corresponding rate from tide gauges at San Diego and Savannah. Though this discrepancy is within the acceptable limits of normal random error associated with leveling measurements, it may also result in part from unavoidable uncertainties at the connection points between the various segments. In the absence of deterministic evidence on the source of the discrepancy, a least-squares adjustment was performed to distribute this difference in the overall trend through the profile. Apart from this trend, the western end of the profile is dominated by pronounced subsidence (rates 10 cm/yr) owing to water withdrawal and associated consolidation of alluvial sediments. With the exception of these movements, rates of vertical movement of the eastern and western United States are similar, suggesting that if such measurements represent significant tectonic activity, this activity may not be confined to the western United States. Movements are correlated with topography only in the peninsular ranges of California. Although these apparent elevation changes may reflect actual ground movement, this correlation may also result from systematic leveling errors. Comparison with gravity, depth to basement and depth to Moho shows no correlation.  相似文献   

7.
In progressing from a granitoid mylonite to an ultramylonite in the Brevard shear zone in North Carolina, Ca and LOI (H2O) increase, Si, Mg, K, Na, Ba, Sr, Ta, Cs and Th decrease, while changes in Al, Ti, Fe, P, Sc, Rb, REE, Hf, Cr and U are relatively small. A volume loss of 44% is calculated for the Brevard ultramylonite relative to an Al–Ti–Fe isocon. The increase in Ca and LOI is related to a large increase in retrograde epidote and muscovite in the ultramylonite, the decreases in K, Na, Si, Ba and Sr reflect the destruction of feldspars, and the decrease in Mg is related to the destruction of biotite during mylonitization. In an amphibolite facies fault zone separating grey and pink granitic gneisses in the Hope Valley shear zone in New England, compositional similarity suggests the ultramylonite is composed chiefly of the pink gneisses. Utilizing an Al–Ti–Fe isocon for the pink gneisses, Sc, Cr, Hf, Ta, U, Th and M-HREE are relatively unchanged, Si, LOI, K, Mg, Rb, Cs and Ba are enriched, and Ca, Na, P, Sr and LREE are lost during deformation. In contrast to the Brevard mylonite, the Hope Valley mylonite appears to have increased in volume by about 70%, chiefly in response to an introduction of quartz. Chondrite-normalized REE patterns of granitoids from both shear zones are LREE-enriched and have prominent negative Eu anomalies. Although REE increase in abundance in the Brevard ultramylonites (reflecting the volume loss), the shape of the REE pattern remains unchanged. In contrast, REE and especially LREE decrease in abundance with increasing deformation of the Hope Valley gneisses. Mass balance calculations indicate that ≥95% of the REE in the Brevard rocks reside in titanite. In contrast, in the Hope Valley rocks only 15–40% of the REE can be accounted for collectively by titanite, apatite and zircon. Possible sites for the remaining REE are allanite, fluorite or grain boundaries. Loss of LREE from the pink gneisses during deformation may have resulted from decreases in allanite and perhaps apatite or by leaching ofy REE from grain boundaries by fluids moving through the shear zone. Among the element ratios most resistant to change during mylonitization in the Brevard shear zone are La/Yb, Eu/Eu*, Sm/Nd, La/Sc, Th/Sc, Th/Yb, Cr/Th, Th/U and Hf/Ta, whereas the most stable ratios in the Hope Valley shear zone are K/Rb, Rb/Cs, Th/U, Eu/Eu*, Th/Sc, Th/Yb, Sm/Nd, Th/Ta, Hf/Ta and Hf/Yb. However, until more trace element data are available from other shear zones, these ratios should not be used alone to identify protoliths of deformed rocks.  相似文献   

8.
松辽盆地林甸断陷是由2个次级断陷构成的复合断陷。次级断陷由斜坡-断阶带、凹陷带、断隆带构成。盆地的次级构造单元控制了物源区、水系和沉积区的分布,控制了沉积体系的发育与类型。断阶带控制砂体的发育与展布,陡坡断阶带发育冲积扇-扇三角洲沉积体系,而缓坡断阶发育冲积扇-河流-三角洲沉积体系。断陷内部的断隆带起到分水岭的作用,两侧分别发育河流-三角洲体系。断裂的下降盘不仅可以作为沉积区,而且可以作为沉积物的通道,由此沉积物可以输送到沉积中心区域。由单断凹或双断凹控制的凹陷带发育细粒沉积,为滨湖沼泽和浅湖所占据,成为生油凹陷。  相似文献   

9.
《Gondwana Research》2002,5(1):197-203
Limited evidence from Sm-Nd TDM model ages, U-Pb ages of xenocrystic zircon, and Pb isotopic data indicates the presence of Paleoproterozoic and Mesoproterozoic crust (2.0-1.3 Ga) in the southern and central Appalachian orogen. This apparently unexposed older crust must underlie much of the Blue Ridge, and it was recycled to produce most of the rocks of the Blue Ridge with ages ≤1.3 Ga. In the eastern Blue Ridge and in blocks to the southeast, there also is a significant juvenile Neoproterozoic source component. Going toward the southeast, the central and eastern Piedmont (Carolina terrane) appears to be underlain by progressively less source component older than 1.0 Ga. Late Proterozoic rocks of the Carolina terrane are derived largely from a juvenile source with a Nd isotopic composition that approaches that of depleted mantle.  相似文献   

10.
Africa’s landscape is dominated by a manifold of second-order epeirogenic structures superimposed on a first-order bimodal topography. Bivariate regression analysis of Africa’s surface topography shows that this is a complexly folded surface with regionally elevated areas in southern and eastern Africa, and a topographically low northern and western Africa. The apparent spatial relationships between these features are analysed using anomaly correlation between surface topography and free-air gravity anomalies. Occurrences of positively correlated features between gravity and topography in Africa are found to be limited to second-order epeirogenic features. Geophysical modelling and geologic evidence indicate that Africa’s bimodal topography is genetically distinct from these second-order features, and linked to sources as deep as the sublithospheric mantle. The age, measured and modelled elevation of the bimodal topography require that topographic uplift of south-central Africa be episodic. We infer from our findings together with relative sea-level changes, that the near-bimodality of Africa’s topography is an ancient feature inherited at least from upper Paleozoic times. Our reconstructed paleotopography suggests that Africa was largely a low-lying continent dominated by its cratons, and that basement distribution disregards the present-day uplift patterns of Africa.  相似文献   

11.
12.
Drainage patterns along passive continental margins are often hypothesised to be the result of drainage disruption following highland uplift and downwarping of the highland flank. Several studies of stream catchments throughout southeast Australia have demonstrated that the opposite tends to be the case in this region because the field evidence favours stream and continental drainage‐divide stability. While significant advances have been made towards understanding this phenomenon in the southeastern corner of the continent, little is known of the evolution of streams and highlands in northeast Australia. Our study examines palaeochannels and fluvial sedimentary units close to the continental drainage divide in six stream catchments along the length of Cape York Peninsula. The results show that four of the catchments (Barron‐Mitchell and Stewart‐Holroyd) have experienced continental divide and drainage stability, whereas the Pascoe‐Wenlock system appears to have experienced westward migration of the continental drainage divide and diversion of the Pascoe River. River diversion here is likely to be a result of the raising of base‐level and flooding of stream channels during the Cretaceous marine transgression and subsequent stream incision by the Pascoe River along structural weaknesses in the underlying strata, following cessation of marine conditions.  相似文献   

13.
14.
A geomorphic study of the Mississippi River and its alluvial valley between Osceola, Arkansas and Friars Point, Mississippi has identified anomalous surface features that can be linked to known geological structures. For example, relatively recent deformation along Big Creek fault zone, White River fault zone, Bolivar-Mansfield tectonic zone, Blytheville Arch, Crittenden County fault zone, and Reelfoot Rift margins is suggested by river and topographic anomalies. Faults and plutons appear to affect drainage networks, and the morphology of Crowleys Ridge suggests significant fault control. The many anomalies probably reflect a fractured suballuvial surface. Although movement along these fractures will most likely occur in seismically active areas, the probability of movement elsewhere  相似文献   

15.
Three palynological biozones are proposed for the Maastrichtian Stage of South Carolina. In ascending stratigraphic order, the biozones are the Carolinapollis triangularis (Ct) Interval Biozone, the Holkopollenites chemardensis (Hc) Interval Biozone, and the Sparganiaceaepollenites uniformis (Su) Interval Biozone. Integration of the biostratigraphy with lithologic and geophysical log data suggests that within the study area, the upper and lower boundaries of each zone are bounded by regional unconformities, and that a three-fold subdivision of the Maastrichtian Stage is warranted. The biozonation is based on the analysis of 114 samples from 24 subsurface and three outcrop sections from the Coastal Plain of South Carolina; samples from an additional seven subsurface and 18 outcrop sections from North Carolina and Georgia were examined to evaluate the geographic extent of the biozones. One new genus and five new species of pollen are described, and emendations are presented for two genera and one species of pollen.  相似文献   

16.
Pelitic units in the eastern Great Smoky Mountains of the North Carolina Blue Ridge contain rutile grains only in kyanite and higher zones. Adjacent non-pelitic rocks do not contain rutile at kyanite grade but commonly contain sphene. Detrital rutile breaks down at metamorphic grades lower than those at which metamorphic rutile forms. Similarly, pelitic rocks in southeastern Connecticut contain rutile grains above, but not below, the sillimanite isograd. Most non-pelitic rocks there contain rutile only in the hypersthene zone. The slight difference in behavior of rutile in the two terranes is attributed primarily to a slight difference in calcium content of the pelites. In both areas, rutile commonly appears first as inclusions in garnet. Geologic maps showing metamorphic and stratigraphic or compositional information should be useful as prospecting tools for placer deposits. A variety of rocks at granulite facies and pelitic rocks of the upper amphibolite facies contain rutile and these could provide an extensive source for rutile in rutile placer deposits.  相似文献   

17.
Abstract The preserved array of pressures in the eastern Dalradian indicates that considerable syn- to post-metamorphic differential uplift has occurred. This inferred differential uplift suggests that Buchan sillimanite zone rocks originally lay at higher structural levels than presently adjacent cooler kyanite zone rocks to the west. A number of features are believed to coincide with the western margin of the sillimanite zone. These are a maximum in temperature, sharp thermal features, a high strain zone, and a train of metabasites. These features are explained by invoking syn-metamorphic movement between the Buchan sillimanite zone and the kyanite zone to its west, involving some horizontal component of movement. It is suggested that the lateral, now eroded, equivalents of the Buchan area once provided part of the required tectonic thickening for other parts of the Dalradian. Areas surrounding the Buchan area suffered tectonic burial followed by metamorphism during uplift relative to the Buchan area.  相似文献   

18.
 New high-resolution seismic reflection data from the central part of Lake Baikal provide new insight into the structure and stratigraphy of Academician Ridge, a large intra-rift accommodation zone separating the Central and North Baikal basins. Four seismic packages are distinguished above the basement: a thin top-of-basement unit; seismic-stratigraphic unit X; seismic-stratigraphic unit A; and seismic-stratigraphic unit B. Units A and B were cored on selected key locations. The four packages are correlated with a series of deposits exposed on the nearby western shores: the Ularyar Sequence (Oligocene); the Tagay Sequence (Lower to Middle Miocene); the Sasa Sequence (Upper Miocene to Lower Pliocene); the Kharantsy Sequence (Upper Pliocene); and the Nyurga Sequence (Lower Pleistocene). Based on stratal relationships, sedimentary geometries, distribution patterns and principal morphostructural elements – both onshore and offshore – we propose a new palaeogeographic evolution model for the area. In this model progressive tectonic subsidence of the Baikal basins and successive pulses of uplift of various segments of the rift margins lead to: (a) formation of the ridge as a structural and morphological feature separating the Central and North Baikal basins during the Middle to Late Miocene; (b) gradual flooding of the main parts of the ridge and establishment of a lacustrine connection between the two rift basins during the Late Miocene; and (c) total submergence of the top parts of the crest of the ridge during the latest Pleistocene. This new model helps to better constrain numerous phases in the structural evolution of the Baikal Rift, in which the Academician Ridge as an accommodation zone plays a crucial role. Received: 26 November 1999 / Accepted: 12 March 2000  相似文献   

19.
The magnetic anomaly map of North America serves as a useful base from which to attempt palinspastic reconstruction of terranes accreted during the Elzevirian orogeny (1250–1200 Ma); the Shawinigan (1200–1150 Ma), Ottawan (1080–1020 Ma), and Rigolet (1020–1000 Ma) phases of the Grenvillian orogeny; and post-Grenvillian magmatism (760–600 Ma) and deformation prior to Iapetan rifting at 565 Ma. Accreted terranes had unique histories prior to amalgamation and share common tectonic events afterwards. Comparisons with magnetic signatures of the Paleozoic craton–craton suture, sutures of accreted terranes, and the Jurassic rifted-margin for the southern-central Appalachians provide a basis for discriminating among alternative Grenvillian sutures beneath the Appalachian orogen.The Elzevirian suture is partially preserved beneath the Appalachians where it separates the Reading Prong terrane from Laurentia (i.e., Adirondacks and composite-arc terrane and Canadian Grenville Province). The Shawinigan suture is partially preserved in the Llano area (Texas), but separated the now-fragmented and allochthonous Amazonian (as indicated from Pb-isotope data) blocks of the outboard Blue Ridge terrane from the Reading Prong terrane in the Appalachians. Isolated blocks of the Sauratown Mountains terrane are interpreted as outboard of the Blue Ridge terrane, but were also accreted during the Shawinigan phase. Within present-day Laurentia, the only fragment of a terrane believed to have been accreted during the main Ottawan phase is the Mars Hill terrane (North Carolina–Tennessee). This suggests that the outboard Ottawan suture may have served as the locus of Iapetan rifting along much of Laurentia. The Rigolet phase (1020–1000 Ma) is characterized by widespread “Basin and Range” type extension (NW–SE) associated with sinistral or dextral movement on the NY-AL lineament, mobilization of core-complexes (Adirondack Highlands), and AMCG magmatism along the outboard flank of the extensional region. Following the Rigolet phase, the Appalachian region continued to be characterized by NW–SE extension during the passage of a possible hotspot along a NE-track (760–600 Ma) across the Blue Ridge and other terranes, and during initial Iapetan rifting (565 Ma). The palinspastic rifted-margin of Laurentia crosses many of these terranes and sutures as well as the possible region of Rigolet extension and the possible hotspot track, thus providing many potential piercing points within the Grenville orogen for comparison with Paleozoic terranes like the Precordillera in South America.  相似文献   

20.
Although intense rainfall and localized flooding occurred as Hurricane Isabel tracked inland northwestardly across the Blue Ridge Mountains of central Virginia on September 18–19, 2003, few landslides occurred. However, the hurricane reactivated a dormant landslide along a bluff of an incised alluvial fan along Meadow Run on the western flanks of the Blue Ridge Mountains. Subsequent monitoring showed retrogressive movement involving several landslide blocks for the next several months. Using dendrochronology, aerial photography, and stream discharge records revealed periods of landslide activity. The annual variation of growth rings on trees within the landslide suggested previous slope instability in 1937, 1972, 1993, 1997, and 1999, which correlated with periods of local flood events. The avulsive and migrating nature of Meadow Run, combined with strong erosional force potential during flood stages, indicates that landslides are common along the bluff-channel bank interface, locally posing landslide hazards to relatively few structures within this farming region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号