首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
Assessing landslide exposure in areas with limited landslide information   总被引:4,自引:2,他引:2  
Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. In this paper, a qualitative procedure for assessing the exposure of elements at risk is presented for an area of the Apulia region (Italy) where no temporal information on landslide occurrence is available. Given these limitations in data availability, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. The qualitative analysis was carried out using the spatial multi-criteria evaluation method in a global information system. A landslide susceptibility composite index map and four asset index maps (physical, social, economic and environmental) were generated separately through a hierarchical procedure of standardising and weighting. The four asset index maps were combined in order to obtain a qualitative weighted assets map, which, combined with the landslide susceptibility composite index map, has provided the final qualitative landslide exposure map. The resulting map represents the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to demonstrate how such an exposure map could be used in a basic risk assessment, a quantification of the economic losses at municipal level was carried out, and the temporal probability of landslides was estimated, on the basis of the expert knowledge. Although the proposed methodology for the exposure assessment did not consider the landslide run-out and vulnerability quantification, the results obtained allow to rank the municipalities in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.  相似文献   

2.
Landslide hazard or susceptibility assessment is based on the selection of relevant factors which play a role on the slope instability, and it is assumed that landslides will occur at similar conditions to those in the past. The selected statistical method compares parametric maps with the landslide inventory map, and results are then extrapolated to the entire evaluated territory with a final product of landslide hazard or susceptibility map. Elements at risk are defined and analyzed in relation with landslide hazard, and their vulnerability is thus established. The landslide risk map presents risk scenarios and expected financial losses caused by landslides, and it utilizes prognoses and analyses arising from the landslide hazard map. However, especially the risk scenarios for future in a selected area have a significant importance, the literature generally consists of the landslide susceptibility assessment and papers which attempt to assess and construct the map of the landslide risk are not prevail. In the paper presented herein, landslide hazard and risk assessment using bivariate statistical analysis was applied in the landslide area between Hlohovec and Sered?? cities in the south-western Slovakia, and methodology for the risk assessment was explained in detail.  相似文献   

3.
Owing to fragile geo-morphology, extreme climatic conditions, and densely populated settlements and rapid development activities, West Java Province is the most landslide hazardous area in Indonesia. So, a landslide risk map for this province bears a great importance such as for land-use planning. It is however widely accepted that landslide risk analysis is often difficult because of the difficulties involved in landslide hazard assessment and estimation of consequences of future landslide events. For instance, lack of multi-temporal inventory map or records of triggering events is often a major problem in landslide hazard mapping. In this study, we propose a simple technique for converting a landslide susceptibility map into a landslide hazard map, which we have employed for landslide risk analysis in one ideally hazardous part of volcanic mountains in West Java Province. The susceptibility analysis was carried out through correlation between past landslides and eight spatial parameters related to instability, i.e. slope, aspect, relative relief, distance to river, geological units, soil type, land use and distance to road. The obtained susceptibility map was validated using cross-time technique, and was collaborated with the frequency-area statistics to respond to ‘when landslide will occur’ and ‘how large it will be’. As for the judgment of the consequences of future landslides, expert opinion was used considering available literature and characteristic of the study area. We have only considered economic loss in terms of physical damage of buildings, roads and agricultural lands for the landslide risk analysis. From this study, we understand the following: (1) the hazard map obtained from conversion of the susceptibility map gives spatial probability and the area of an expected landslide will be greater than 500m2 in the next 2 years, (2) the landslide risk map shows that 24% of the total area is in high risk; 30% in moderate risk; 45% in low risk and no risk covers only 1% of the total area, and (3) the loss will be high in agricultural lands, while it will be low in the road structures and buildings.  相似文献   

4.
应用物元理论,提出了滑坡灾害风险预测物元综合评判的基本流程,并以危险性预测为例讨论了物元集合的建立、等级关联度的确定等关键技术问题,建立了滑坡灾害风险综合评判的物元模型;运用物元模型与GIS技术相结合,对三峡水库蓄水条件下巴东新县城的滑坡灾害进行了危险性、易损性、风险性综合预测研究,证明了物元模型在区域滑坡灾害风险预测中的应用可行性;同时指出了所存在的问题及可能解决的途径。  相似文献   

5.
滑坡危险性定量评估是滑坡风险评估中的关键和难点,也是当前国际风险管理研究中的热点问题.以滑坡密集分布的黑方台南塬为研究区,以32处典型滑坡为研究对象,依据多期三维数字高程模型(DEM),提出了一种基于强度的滑坡危险性定量评估技术方法.根据多期三维地形信息的解译及野外调查,编制多期滑坡分布图,计算滑坡活动的频率.利用GIS技术,利用滑坡体积与速度的乘积计算滑坡强度.将滑坡危险性定义为滑坡频率和滑坡强度的乘积,同时调查和分析了黑方台地区各类承灾体的类型、价值及其在相应滑坡强度下的易损性,在此基础上开展了单体滑坡风险评估和黑方台南塬滑坡风险区划.  相似文献   

6.
Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure, a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.  相似文献   

7.
Landslides are studied systematically in order to evaluate the nature of hazard and the damages to the human life, land, roads, buildings and other properties. This can be expressed in terms of risk, which is a function of hazard probability and damage potential. A risk map will indicate the priorities for landslide hazard management. A new approach to risk assessment mapping using a risk assessment matrix (RAM) is presented.  相似文献   

8.
地震滑坡是一种有着严重危害的次生地震灾害形式,形成机制复杂,涉及因素众多。运用G IS丰富的空间分析功能,对地震滑坡的影响因素进行研究,并进行潜在地震滑坡区的预测,是地震滑坡研究领域的一种新的发展趋势。本文在对1976年龙陵地震引发的地震滑坡分布特征研究的基础上,结合前人有关中国西南地区地震滑坡特征的研究成果,应用G IS对该区潜在地震滑坡危险区进行了预测。  相似文献   

9.
基于聚类分析的滑坡灾害危险性区划研究   总被引:1,自引:1,他引:0       下载免费PDF全文
滑坡灾害危险性区划研究在城市规划决策方面具有重要的现实意义。聚类分析以统计学的形式将具有相似特征的数据进行归类,能够实现滑坡灾害危险性空间分布情况的定量评价。根据湖北省巴东县滑坡灾害统计资料,选择具有代表性的滑坡灾害影响因素作为危险性区划评价指标,采用熵权法和层次分析法相结合,综合评判各指标权重。并在此基础上,以MapGIS为操作平台,以C#语言编程实现了快速聚类算法,对研究区86216个单元进行了滑坡灾害属性分类及危险性等级自动识别,预测结果较好。本研究将综合权重评判方法与聚类模型结合,同时克服了聚类结果不能自动排序的困难,对处理大批量,多属性数据具有一定的创新性和实用价值。  相似文献   

10.
RS与GIS支持下的汶川县城周边地质灾害危险性评价   总被引:1,自引:1,他引:0       下载免费PDF全文
刘汉湖 《中国地质》2012,39(1):243-251
地质灾害危险性评价是防灾减灾工作的重要依据。本文以汶川县城周边64 km2为例,应用遥感信息提取技术与GIS空间分析方法,根据IKONOS遥感图像和地形图及野外调查资料,提取了崩塌和滑坡易发性评价因子,采用信息量法确定了因子分值,计算了崩塌和滑坡易发性,并分别提出崩塌和滑坡的危险性计算方法,形成了汶川地区崩塌和滑坡危险性分区图。研究结果表明:新的崩塌和滑坡危险性评价方法能够反映区内地质灾害危险程度,该方法可行,结果合理,这为中、大比例尺区域范围内地质灾害危险性研究提供了有益的思路。  相似文献   

11.
Mailuu-Suu is a former uranium mining area in Kyrgyzstan (Central Asia) at the northern border of the Fergana Basin. This region is particularly prone to landslide hazards and, during the last 50 years, has experienced severe landslide disasters in the vicinity of numerous nuclear waste tailing dams. Due to its critical situation, the Mailuu-Suu region was and still is the target area for several risk assessment projects. This paper provides a brief review of previous studies, past landslide events and a discussion on possible future risk scenarios. Various aspects of landslide hazard and related impacts in the Mailuu-Suu Valley are analyzed in detail: landslide susceptibility, historical evolution of landslide activity, size-frequency relationship, river damming and flooding as well as impacts on inhabited areas and nuclear waste storage zones. The study was carried out with standard remote sensing tools for the processing of satellite imagery and the construction of digital elevation models (DEMs). The processed inputs were combined on a GIS platform with digital landslide distribution maps of 1962, 1977, and 2003, digitized geological and geographic maps, and information from landslide monitoring and geophysical investigation.As a result, various types of landslide susceptibility maps based on conditional analysis (CA) are presented as well as predictions of future landslide activity and related damming potential and their possible impact on the population. For some risk scenarios, remediation and prevention measures are suggested.  相似文献   

12.
Landslide hazard, vulnerability, and risk-zoning maps are considered in the decision-making process that involves land use/land cover (LULC) planning in disaster-prone areas. The accuracy of these analyses is directly related to the quality of spatial data needed and methods employed to obtain such data. In this study, we produced a landslide inventory map that depicts 164 landslide locations using high-resolution airborne laser scanning data. The landslide inventory data were randomly divided into a training dataset: 70 % for training the models and 30 % for validation. In the initial step, a susceptibility map was developed using logistic regression approach in which weights were assigned to every conditioning factor. A high-resolution airborne laser scanning data (LiDAR) was used to derive the landslide conditioning factors for the spatial prediction of landslide hazard areas. The resultant susceptibility was validated using the area under the curve method. The validation result showed 86.22 and 84.87 % success and prediction rates, respectively. In the second stage, a landslide hazard map was produced using precipitation data for 15 years. The precipitation maps were subsequently prepared and show two main categories (two temporal probabilities) for the study area (the average for any day in a year and abnormal intensity recorded in any day for 15 years) and three return periods (15-, 10-, and 5-year periods). Hazard assessment was performed for the entire study area. In the third step, an element at risk map was prepared using LULC, which was considered in the vulnerability assessment. A vulnerability map was derived according to the following criteria: cost, time required for reconstruction, relative risk of landslide, risk to population, and general effect to certain damage. These criteria were applied only on the LULC of the study area because of lack of data on the population and building footprint and types. Finally, risk maps were produced using the derived vulnerability and hazard information. Thereafter, a risk analysis was conducted. The LULC map was cross-matched with the results of the hazard maps for the return period, and the losses were aggregated for the LULC. Then, the losses were calculated for the three return periods. The map of the risk areas may assist planners in overall landslide hazard management.  相似文献   

13.
The production of flood hazard assessment maps is an important component of flood risk assessment. This study analyses flood hazard using flood mark data. The chosen case study is the 2013 flood event in Quang Nam, Vietnam. The impacts of this event included 17 deaths, 230 injuries, 91,739 flooded properties, 11,530 ha of submerged and damaged agricultural land, 85,080 animals killed and widespread damage to roads, canals, dykes and embankments. The flood mark data include flood depth and flood duration. Analytic hierarchy process method is used to assess the criteria and sub-criteria of the flood hazard. The weights of criteria and sub-criteria are generated based on the judgements of decision-makers using this method. This assessment is combined into a single map using weighted linear combination, integrated with GIS to produce a flood hazard map. Previous research has usually not considered flood duration in flood hazard assessment maps. This factor has a rather strong influence on the livelihood of local communities in Quang Nam, with most agricultural land within the floodplain. A more comprehensive flood hazard assessment mapping process, with the additional consideration of flood duration, can make a significant contribution to flood risk management activities in Vietnam.  相似文献   

14.
全国地质灾害趋势预测及预测图编制   总被引:13,自引:0,他引:13  
区域地质灾害预测是地质灾害研究的难题。本文运用基于地理信息系统的风险评价方法对这一问题进行了探讨。将全国剖分为2700个单元,对地质灾害进行现状评价,并与已数字化的地质灾害图件进行单要素叠加,编制了全国地质现状等值线图,在现状评价基础上,对地质灾害进行趋势预测,将降雨条件、区域地震活动、区域地壳稳定程度、区域岩组条件和人类工程活动等作为区域地质灾害演变的因素,运用模糊综合评判模型进行综合评判,编制了1:600万中国地质灾害趋势预测图。  相似文献   

15.
Zhou  Shu  Ouyang  Chaojun  Huang  Yu 《Acta Geotechnica》2022,17(8):3613-3632

Assessing the hazard of potential landslides is crucial for developing mitigation strategies for landslide disasters. However, accurate assessment of landslide hazard is limited by the lack of landslide inventory maps and difficulty in determining landslide run-out distance. To address these issues, this study developed a novel method combining the InSAR technique with a depth-integrated model. Within this new framework, potential landslides are identified through InSAR and their potential impact areas are subsequently estimated using the depth-integrated model. To evaluate its capability, the proposed method was applied to a landslide event that occurred on November 3, 2018 in Baige village, Tibet, China. The simulated results show that the area with a probability of more than 50% to be affected by landslides matched the real trimlines of the landslide and that the accuracy of the proposed method reached 85.65%. Furthermore, the main deposit characteristics, such as the location of maximum deposit thickness and the main deposit area, could be captured by the proposed method. Potential landslides in the Baige region were also identified and evaluated. The results indicate that in the event of landslides, the collapsed mass has a high probability to block the Jinsha River. It is therefore necessary to implement field monitoring and prepare hazard mitigation strategies in advance. This study provides new insights for regional-scale landslide hazard management and further contributes to the implementation of landslide risk assessment and reduction activities.

  相似文献   

16.
A New Zealand Landslide Database has been developed to hold all of New Zealand’s landslide data and provide factual data for use in landslide hazard and risk assessment, including a probabilistic landslide hazard model for New Zealand, which is currently being developed by GNS Science. Design of a national Landslide Database for New Zealand required consideration of existing landslide data stored in a variety of digital formats and future data yet to be collected. Pre-existing landslide datasets were developed and populated with data reflecting the needs of the landslide or hazard project, and the database structures of the time. Bringing these data into a single database required a new structure capable of containing landslide information at a variety of scales and accuracy, with many different attributes. A unified data model was developed to enable the landslide database to be a repository for New Zealand landslides, irrespective of scale and method of capture. Along with landslide locations, the database may contain information on the timing of landslide events, the type of landslide, the triggering event, volume and area data, and impacts (consequences) for each landslide when this information is available. Information from contributing datasets include a variety of sources including aerial photograph interpretation, field reconnaissance and media accounts. There are currently 22,575 landslide records in the database that include point locations, polygons of landslide source and deposit areas, and linear landslide features. Access to all landslide data is provided with a web application accessible via the Internet. This web application has been developed in-house and is based on open-source software such as the underlying relational database (PostGIS) and the map generating Web Map Server (GeoServer). Future work is to develop automated data-upload routines and mobile applications to allow people to report landslides, adopting a consistent framework.  相似文献   

17.
The present study deals with the application of analytical hierarchy process to prepare landslide hazard risk map of the Shivkhola Watershed applying remote sensing and geographic information system (GIS). Firstly, to integrate all the required thematic data layers and to prepare landslide susceptibility map, prioritised class rating value and prioritised factor rating value were obtained by developing couple-comparing matrix with a reasonable consistency and with the help of MATLAB software after Saaty. Three important risk factor/element maps, that is, weighted land use/land cover map, road contributing area map and settlement density map, were developed and their weighted linear combination was performed to prepare landslide risk exposure map. Then by integrating landslide susceptibility map and landslide risk exposure map, a classification was incorporated on ARC GIS Platform to prepare landslide hazard risk map. To evaluate the validity of the landslide hazard risk map, probability/chance of landslide hazard risk event has been estimated by means of frequency ratio between landslide hazard risk area (%) and number of risk events (%) for each landslide hazard risk class. Finally, an accuracy assessment was also made on ERDAS Imagine (8.5) which depicts that the classification accuracy of the landslide hazard risk map was 92.89 with overall Kappa statistics of 0.8929.  相似文献   

18.
Landslide risk assessment (LRA) is a key component of landslide studies. The landslide risk can be defined as the potential for adverse consequences or loss to human population and property due to the occurrence of landslides. The LRA can be regional or site-specific in nature and is an important information for planning various developmental activities in the area. LRA is considered as a function of landslide potential (LP) and resource damage potential (RDP). The LP and RDP are typically characterized by the landslide susceptibility zonation map and the resource map (i.e., land use land cover map) of the area, respectively. Development of approaches for LRA has always been a challenge. In the present study, two approaches for LRA, one based on the concept of danger pixels and the other based on fuzzy set theory, have been developed and implemented to generate LRA maps of Darjeeling Himalayas, India. The LRA map based on the first approach indicates that 1,015 pixels of habitation and 921 pixels of road section are under risk due to landslides. The LRA map derived from fuzzy set theory based approach shows that a part of habitat area (2,496 pixels) is under very high risk due to landslides. Also, another part of habitat area and a portion of road network (7,204 pixels) are under high risk due to landslides. Thus, LRA map based on the concept of danger pixels gives the pixels under different resource categories at risk due to landslides whereas the LRA map based on the concept of fuzzy set theory further refines this result by defining the degree of severity of risk to these categories by putting these into high and low risk zones. Hence, the landslide risk assessment study carried out using two approaches in this paper can be considered in cohesion for assessing the risks due to landslides in a region.  相似文献   

19.
Hazard and risk assessment of earthquake-induced landslides—case study   总被引:1,自引:0,他引:1  
Landslides as secondary seismic effects are causing some patterns of soil failure that are often considered among the most destructive ones. In fact, the impact from triggered landslides has sometimes exceeded damage directly related to strong shaking and fault rupture. The objective of this research study is landslide hazard and risk assessment considering different water saturation and earthquake scenarios, for a selected area in a sub-urban hilly part of Skopje—the capital of Macedonia. The final product is represented by digital maps of expected permanent displacements for a defined earthquake scenario, in different water saturation conditions of the instable soil layer. Qualitative landslide risk assessment is performed taking into consideration the exposure map of the habitants and local road of the area. As to the target area, it can be concluded that it has the potential for instability that, under certain scenarios, could result in economic and social damage (vulnerability of individual houses, vulnerability of infrastructure and alike). The results from this study referring to potentially affected population and infrastructure present solid base for preventive mitigation activities for reducing the consequences of geotechnical hazards in Skopje City associated with earthquakes.  相似文献   

20.
The paper deals with a methodology for quantitative landslide hazard and risk assessments over wide-scale areas. The approach was designed to fulfil the following requirements: (1) rapid investigation of large study areas; (2) use of elementary information, in order to satisfy the first requirement and to ensure validation, repetition and real time updating of the assessments every time new data are available; (3) computation of the landslide frequency of occurrence, in order to compare objectively different hazard conditions and to minimize references to qualitative hazard attributes such as activity states. The idea of multi-temporal analysis set forth by Cardinali et al. (Nat Hazards Earth Syst Sci 2:57–72, 2002), has been stressed here to compute average recurrence time for individual landslides and to forecast their behaviour within reference time periods. The method is based on the observation of the landslide activity through aerial-photo surveys carried out in several time steps. The output is given by a landslide hazard map showing the mean return period of landslides reactivation. Assessing the hazard in a quantitative way allows for estimating quantitatively the risk as well; thus, the probability of the exposed elements (such as people and real estates) to suffer damages due to the occurrence of landslides can be calculated. The methodology here presented is illustrated with reference to a sample area in Central Italy (Umbria region), for which both the landslide hazard and risk for the human life are analysed and computed. Results show the powerful quantitative approach for assessing the exposure of human activities to the landslide threat for a best choice of the countermeasures needed to mitigate the risk.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号