首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial methane turnover at mud volcanoes of the Gulf of Cadiz   总被引:2,自引:0,他引:2  
The Gulf of Cadiz is a tectonically active area of the European continental margin and characterised by a high abundance of mud volcanoes, diapirs, pockmarks and carbonate chimneys. During the R/V SONNE expedition “GAP-Gibraltar Arc Processes (SO-175)” in December 2003, several mud volcanoes were surveyed for gas seepage and associated microbial methane turnover. Pore water analyses and methane oxidation measurements on sediment cores recovered from the centres of the mud volcanoes Captain Arutyunov, Bonjardim, Ginsburg, Gemini and a newly discovered, mud volcano-like structure called “No Name” show that thermogenic methane and associated higher hydrocarbons rising from deeper sediment strata are completely consumed within the seabed. The presence of a distinct sulphate-methane transition zone (SMT) overlapping with high sulphide concentrations suggests that methane oxidation is mediated under anaerobic conditions with sulphate as the electron acceptor. Anaerobic oxidation of methane (AOM) and sulphate reduction (SR) rates show maxima at the SMT, which was found between 20 and 200 cm below seafloor at the different mud volcanoes. In comparison to other methane seeps, AOM activity (<383 mmol m−2 year−1) and diffusive methane fluxes (<321 mmol m−2 year−1) in mud volcano sediments of the Gulf of Cadiz are low to mid range. Corresponding lipid biomarker and 16S rDNA clone library analysis give evidence that AOM is mediated by a mixed community of anaerobic methanotrophic archaea and associated sulphate reducing bacteria (SRB) in the studied mud volcanoes. Little is known about the variability of methane fluxes in this environment. Carbonate crusts littering the seafloor of mud volcanoes in the northern part of the Gulf of Cadiz had strongly 13C-depleted lipid signatures indicative of higher seepage activities in the past. However, actual seafloor video observations showed only scarce traces of methane seepage and associated biological processes at the seafloor. No active fluid or free gas escape to the hydrosphere was observed visually at any of the surveyed mud volcanoes, and biogeochemical measurements indicate a complete methane consumption in the seafloor. Our observations suggest that the emission of methane to the hydrosphere from the mud volcano structures studied here may be insignificant at present.  相似文献   

2.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

3.
The release of remineralized N and P from the organic-rich anoxic sediments of Cape Lookout Bight is controlled by processes occurring within the sediment column and at the sediment-water interface. The relatively rapid rates of temperature dependent microbial degradation of organic matter support seasonally varying nutrient fluxes ranging from 20 to 1200 μmol·m?2·hr?1 for dissolved ammonium and from ? 20 to 120 μmol·m?2·hr?1 for total dissolved phosphate (measured in situ over the period October, 1976 to October, 1978). Molecular diffusion along steep vertical pore water concentration gradients measured simultaneously cannot explain the high fluxes observed during warmer months. Gradients for ammonium and phosphate ranged from 0.33 to 1.10 and from 0 to 0.29 μmol·cm?3pw·cm?1s respectively. These high summertime fluxes appear to result from increased sediment-water transport associated with bubble tubes created and maintained by low-tide methane gas bubble ebullition. When these tubes are present, apparent bulk sediment diffusivities calculated from concurrent studies of methane and radon-222 sediment-water exchange are 1.0–3.1 times greater than molecular diffusivities. Nutrient fluxes calculated via Fick's first law taking into account this enhanced transport and the differential diffusive mobilities of dissolved ammonium, phosphate and phosphate ion pairs indicate that removal by aerobic adsorption and/or biological uptake at the sediment-water interface plays an important role in controlling nutrient exchange in these sediments.  相似文献   

4.
Sediment denitrification was monthly evaluated in two tropical coastal lagoons with different trophic states using the 15N isotope pairing technique. Denitrification rates were very low in both environments, always <5.0 μmol N2 m?2 h?1 and were not significantly different between them. Oxygen consumption varied from 426 to 4248 μmol O2 m?2 h?1 and was generally three times higher in the meso-eutrophic than the oligotrophic lagoon. The low denitrification activity was ascribed to both low water NO3 ? concentrations (<2.0 μM) and little nitrate supply from nitrification. There was no correlation of denitrification with nitrate or ammonium fluxes. Sediments in temperate environments with similar oxygen consumption rates usually presented a higher proportion of nitrification–denitrification rates. Sediment oxygen consumption was a good predictor of sediment denitrification in both studied lagoons.  相似文献   

5.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

6.
The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m?2 year?1, respectively, with a mean of 140 mol m?2 year?1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.  相似文献   

7.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

8.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

9.
Measurements of groundwater-dissolved inorganic nitrogen (nitrate?+?nitrite?+?ammonia) and phosphate concentrations were combined with recent, radium-based, submarine groundwater discharge (SGD) fluxes and prior estimates of SGD determined from Darcy’s Law, a hydrologic model, and total recharge to yield corresponding SGD nutrient fluxes to Ninigret, Point Judith, Quonochontaug, and Winnapaug ponds, located in southern Rhode Island. Results range from 80 to279 mmol N m?2 year?1 and 4 to 15 mmol P m?2 year?1 for Ninigret, 48 to 265 mmol N m?2 year?1 and 4 to 23 mmol P m?2 year?1 for Point Judith, 31 to 62 mmol N m?2 year?1 and 1 to 2 mmol P m?2 y?1 for Quonochontaug, and 668 to 1,586 mmol N m?2 year?1 and 29 to 70 mmol P m?2 year?1 for Winnapaug ponds, respectively. On a daily basis, the SGD supply of dissolved inorganic nitrogen and phosphorus is estimated to represent ~1–6 % of the total amount of these nutrients in surface waters of Ninigret, Point Judith, and Quonochontaug ponds and up to 84 and 17 % for Winnapaug, respectively, which may reflect a greater SGD nutrient supply to this pond because of the proximity of fertilized golf courses. With regard to the total external input of these essential nutrients, SGD represents 29–45 % of dissolved inorganic nitrogen input to Ninigret, Point Judith, and Quonochontaug ponds and as much as 93 % for Winnapaug pond. For phosphorus, the contribution from SGD represents 59–85 % of the total external input for Ninigret, Point Judith, and Quonochontaug ponds and essentially all of the phosphorus input to Winnapaug pond. Estimated rates of primary productivity potentially supported by the average supply of dissolved inorganic nitrogen from SGD range from 10 g C m?2 year?1 for Ninigret, 13 g C m?2 year?1 for Point Judith, 4 g C m?2 year?1 for Quonochontaug, and as high as 84 g C m?2 y?1 for Winnapaug pond. The imputed SGD-derived rates of primary productivity represent 4–9 % of water column primary production for Ninigret, Point Judith, and Quonochontaug ponds, and 74 % for Winnapaug pond, a result that is reasonably comparable to several other coastal environments where estimates of SGD nutrient supply have been reported. The implication is that SGD represents an ecologically significant source of dissolved nutrients to the coastal salt ponds of southern Rhode Island and, by inference, other coastal systems.  相似文献   

10.
Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA   总被引:1,自引:0,他引:1  
We used clear, acrylic chambers to measure in situ community oxygen and nutrient fluxes under day and night conditions in seagrass beds at five sites across Florida Bay five times between September 1997 and March 1999. Underlying sediments are biogenic carbonate with porosities of 0.7–0.9 and with low organic content (<1.6%). The seagrass communities always removed oxygen from the water column during the night and produced oxygen during daylight, and sampling date and site significantly affected both night and daytime oxygen fluxes. Net daily average fluxes of oxygen (?4.9 to 49 mmol m?2 day?1) ranged from net autotrophy to heterotrophy across the bay and during the 18-month sampling period. However, the Rabbit Key Basin site, located in the west-central bay and covered with a dense Thalassia testudinum bed, was always autotrophic with net average oxygen production ranging from 4.8 to 49 mmol m?2 day?1. In November 1998, three of the five sites were strongly heterotrophic and oxygen production was least at Rabbit, suggesting the possibility of hypoxic conditions in fall. Average ammonium (NH4) concentrations in the water column varied widely across the bay, ranging from a mean of 6.9 μmol l?1 at Calusa in the eastern bay to a mean of 0.6 μmol l?1 at Rabbit Key for the period of study. However, average NH4 fluxes by site and date (?240 to 110 μmol m?2 h?1) were not correlated with water column concentrations and did not vary in a consistent diel, seasonal, or spatial pattern. Concentrations of dissolved organic nitrogen (DON) in the water column, averaged by site (15–25 μmol l?1), were greater than mean NH4 concentrations, and the range of day and night DON fluxes (?920 to 1,300 μmol m?2 h?1), averaged by site and date, was greater than the range of mean NH4 fluxes. Average DON fluxes did not vary consistently from day to night, seasonally or spatially. Mean silicate fluxes ranged from ?590 to 860 μmol m?2 h?1 across all sites and dates, but mean net daily fluxes were less variable and most of the time contributed small amounts of silicate to the water column. Mean concentrations of filterable reactive phosphorus (FRP) in the water column across the bay were very low (0.021–0.075 μmol l?1); but site average concentrations of dissolved organic phosphorus (DOP) were higher (0.04–0.15 μmol l?1) and showed a gradient of increasing concentration from east to west in the bay. A pronounced gradient in average surficial sediment total phosphorus (1.1–12 μmol g DW?1) along an east-to-west gradient was not reflected in fluxes of phosphorus. FRP fluxes, averaged by site and date, were low (?5.2 to 52 μmol m?2 h?1), highly variable, and did not vary consistently from day to night or across season or location. Mean DOP fluxes varied over a smaller range (?8.7 to 7.4 μmol m?2 h?1), but also showed no consistent spatial or temporal patterns. These small DOP fluxes were in sharp contrast to the predominately organic phosphorus pool in surficial sediments (site means?=?0.66–7.4 μmol g DW?1). Significant correlations of nutrient fluxes with parameters related to seagrass abundance suggest that the seagrass community may play a major role in nutrient recycling. Integrated means of net daily fluxes over the area of Florida Bay, though highly variable, suggest that seagrass communities might be a source of DOP and NH4 to Florida Bay and might remove small amounts of FRP and potentially large amounts of DON from the waters of the bay.  相似文献   

11.
A hypothesis was tested to determine if a relationship exists between rates of submarine groundwater discharge and the distribution of seagrass beds in the coastal, nearshore northeastern Gulf of Mexico. As determined by nonparametric statistics, four of seven seagrass beds in the northeastern Gulf of Mexico had significantly greater submarine groundwater discharge compared with adjacent sandy areas, but the remainder exhibited the opposite relationship. We were thus unable to verify if a relationship exists between submarine groundwater discharge and the distribution of seagrass beds in the nearshore sites selected. A second objective of this study was to determine the amount of nitrogen and phosphorus delivered to nearshore areas by submarine groundwater discharge. We considered new nutrient inputs to be delivered to surface waters by the upward flux of fresh water. This upward flux of water encounters saline porewaters in the surficial sediments and these porewaters contain recycled nutrients; actual nutrient flux from the sediment to overlying waters includes both new and recycled nutrients. New inputs of nitrogen to overlying surface waters for one 10-km section of coastline, calculated by multiplying groundwater nutrient concentrations from freshwater wells by measured seepage rates, were on the order of 1,100±190 mol N d−1. New and recycled nitrogen fluxes, calculated by multiplying surficial porewater concentrations by measured seepage rates, yielded fluxes of 3,600 ±1,000 mol N d−1. Soluble reactive phosphate values were 150±40 mol P d−1 using freshwater well concentrations and 130±3.0 mol P d−1 using porewater concentrations. These values are comparable to the average nutrient delivery of a small, local river.  相似文献   

12.
This study was conducted in six plots along an elevation gradient in the Qinghai spruce (Picea crassifolia Kom.) forest ecosystem of the Qilian Mountains, northwest China. Soil CO2 efflux over bare soil (R s) and moss covered soil (R s+m) were investigated from June to September in 2010 and 2011 by means of an automated soil CO2 flux system (LI-8100). The results showed that R s ranged from 1.51 to 3.96 (mean 2.64 ± 0.72) μmol m?2 s?1 for 2010, and from 1.41 to 4.09 (mean 2.55 ± 0.70) μmol m?2 s?1 for 2011. The daily change trend of R s resembled that of air temperature (T a), and there was a hysteresis between R s and soil temperature (T s). The seasonal variations of R s at lowlands (i.e., Plot 1, Plot 2 and Plot 3) were driven by soil moisture and temperature (T a and T s), while that at highlands (i.e., Plot 4, Plot 5 and Plot 6) were obviously affected by temperature. There were higher values at Plot 2 and Plot 6, which were caused by the interaction between soil moisture and temperature. In addition, soil CO2 efflux over moss covered soil (R s+m) was 8.83 % less than that over bare soil (R s), indicating that moss was another factor affecting R s. It was concluded that R s had temporal and spatial variations and was mainly controlled by temperature and soil moisture; the main determinants differed at different elevations; moss could reduce R s.  相似文献   

13.
A simple spectrophotometric method for determination of hydrogen sulfide in wastewater and hot spring samples was developed. The method is based on the reaction between hydrogen sulfide and sodium 1,2-naphthoquinone-4-sulfonate (NQS). The effect of various experimental factors on the reaction between hydrogen sulfide and NQS was investigated and optimized using central composite design. The optimal values of the factors were 5.00 × 10?4 mol L?1 for concentration of NQS and 1.00 × 10?2 mol L?1 for concentration of hydrochloric acid. The wavelength of the maximum absorption of the reaction product was 320 nm. Constructed calibration curve for hydrogen sulfide determination was linear in the range of 0.5–20.0 mg L?1 with the detection limit of 0.16 mg L?1. The method was free from interferences. Percent relative errors below 2 % were obtained for determination of hydrogen sulfide in environmental samples.  相似文献   

14.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

15.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   

16.
Methane emissions and oxidation were measured during the wet and dry seasons at the Air Hitam, Jeram, and Sungai Sedu landfills in Malaysia. The resulting levels of methane emissions and oxidation were then modeled using the Inter-governmental Panel on Climate Change 1996 first order decay (FOD) model to obtain methane generation rate and potential values. Emissions measurements were performed using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface methane and carbon dioxide emissions at four monitoring locations in each landfill was used to estimate the methane oxidation capacity. The methane potential value was 151.7 m3 t?1 for the Air Hitam and Jeram sanitary landfills and 75.9 m3 t?1 for the Sungai Sedu open dumping landfill. The methane generation rate value of the Jeram and Air Hitam sanitary landfills during the wet season was 0.136 year?1, while that of Jeram during the dry season was 0.072 year?1. The methane generation rate values of the Sungai Sedu open dumping landfill during the wet and dry seasons were 0.008 and 0.0049 year?1, respectively. The observed values of methane generation rate and potential assist to accurately estimate total methane emissions from Malaysian landfills using the Inter-governmental Panel on Climate Change FOD model.  相似文献   

17.
A complete record derived from a core dated both by 210Pb and 137Cs chronologies from Lake Ngoring at the headwater areas of the Yellow River provides new insight into the changing atmospheric deposition of trace metals including Cd, Cr, Cu, Ni, Pb, and Zn. This study showed that there was an inflection in the early 1960s, before which both fluxes and contents of Cd, Ni, Pb, and Zn remained relatively steady or slowly increased, and thereafter continued increases both in fluxes and contents were found. Taking Pb as an example, the flux increased from 0.13 (before 1960) to 0.25 mg m?2 a?1 (averaged 1963–2006). According to atmospheric flux calculations using Al as a reference element, atmospheric fluxes of trace metals generally showed a rapid increase and peaked in recent years, closely following the historical economic development of the neighboring region, mainly for Qinghai and Gansu provinces. The atmospheric inventory for Zn was the highest, reaching 1.068 g m?2, while the lowest was for Cd, at only 0.079 gm?2. The percentage proportions of atmospheric deposition for Cd, Ni, and Zn were 37, 12, and 8.7 %, respectively. Hence, the atmospheric contribution to the trace metal content via long range transport is not negligible when considering input of materials to lake ecosystems.  相似文献   

18.
The Dvurechenskii mud volcano (DMV) is located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea). The DMV was studied during the RV Meteor expedition M72/2 as an example of an active mud volcano system, to investigate the significance of submarine mud volcanism for the methane and sulfide budget of the anoxic Black Sea hydrosphere. Our studies included benthic fluxes of methane and sulfide, as well as the factors controlling transport, consumption and production of both compounds within the sediment. The pie-shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at its summit north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was repressed in this zone due to the upward flow of sulfate-depleted fluids through recently deposited subsurface muds, apparently limiting microbial methanotrophic activity. Consequently, the emission of dissolved methane into the water column was high, with an estimated rate of 0.46 mol m−2 d−1. On the wide plateau and edge of the mud volcano surrounding the summit, fluid flow and total methane flux were lower, allowing higher SR and AOM rates correlated with an increase in sulfate penetration into the sediment. Here, between 50% and 70% of the methane flux (0.07-0.1 mol m−2 d−1) was consumed within the upper 10 cm of the sediment. The overall amount of dissolved methane released from the entire mud volcano structure into the water column was significant with a discharge of 1.3 × 107 mol yr−1. The DMV maintains also high areal rates of methane-fueled sulfide production and emission of on average 0.05 mol m−2 d−1. This is a difference to mud volcanoes in oxic waters, which emit similar amounts of methane, but not sulfide. However, based on a comparison of this and other mud volcanoes of the Black Sea, we conclude that sulfide and methane emission into the hydrosphere from deep-water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.  相似文献   

19.
The present study evaluated the effect of plant species on methane (CH4) emission and microbial populations in three types of soil–plant systems. Results showed large variation of CH4 flux rate ranging from 1.35 to 212.61 mg CH4 m?2 h?1. Emission peak of CH4 occurred in July. No significant difference was found in the non-vegetation system spanning 2 years. Compared with non-vegetation, vegetation systems had much higher flux of CH4, and obvious seasonal variation was observed. The polyculture system planted with Zizania latifolia (Z. latifolia) and Phragmites australis (P. australis) released higher CH4 fluxes than the mono system (P. australis), reflecting that Z. latifolia growth could simulate CH4 emission. The fluorescence in situ hybridization (FISH) results support the characteristics of CH4 fluxes. Much higher methanotrophs amount and lower methanogens amount from the mono system than those from the polyculture system was observed indicating that Z. latifolia growth may limit the oxygen transportation resulting in higher CH4 emission. The polyculture system has the highest potential of CH4 emission.  相似文献   

20.
As an essential nutrient for diatoms, silica plays a key role in the estuarine and coastal food web. High concentrations of dissolved silica (DSi) were found in the seepage water of tidal freshwater marshes, which were therefore assumed to contribute to the silica supply to estuarine waters in times of silica limitation. A comprehensive budget calculation for European salt marshes is presented in this study. Earlier, salt marshes were considered to have even higher silica recycling rates than tidal freshwater marshes. Between 2009 and 2011, concentrations, pools and fluxes of silica in two salt marshes at the German Wadden Sea coast were determined (in soil, pore water, aboveground vegetation, freshly deposited sediments and seepage water). Subsequently, a budget was calculated. Special emphasis was placed on the influence of grazing management on silica cycling. Our results show that the two salt marshes were sinks for silica. The average import of biogenic silica (BSi) with freshly deposited sediments (1,334 kmol km?2 year?1) largely exceeded the DSi and BSi exports with seepage water (80 kmol km?2 year?1). Grazing management can affect silica cycling of salt marshes by influencing hydrology and vegetation structure. Abandoned sites had larger DSi export rates than grazed sites. One third of all BSi imports occurred in only one major flooding, underlining the relevance of rare events in the silica budget of tidal marshes. This aspect has been widely neglected in earlier studies, what might have led to an underestimation of silica import rates to tidal marshes hitherto.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号