首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lipid fraction and cell-wall materials have been separated from three types of algae (blue green, Microcystis sp.; green, Scenedesmus sp. and diatomaceous Diatoma sp.) and their KMnO4 oxidation products (aliphatic α,ω-C2-C12 dicarboxylic acids; aliphatic normal C14–C24 monocarboxylic acids; benzoic acid and C18 isoprenoidal ketone) examined by gas chromatography and gas chromatographymass spectrometry. The results suggest that the lipid material could make a greater contribution to polymethylene chains in kerogen than the cell-wall material, when the kerogens are mainly derived from algal components.  相似文献   

2.
Kerogen was isolated from a marine sediment from Tanner Basin, offshore California. Samples of the kerogen were heated under an inert atmosphere at various temperatures and times. The heated and unheated kerogens were subjected to alkaline potassium permanganate oxidation followed by GC/ MS analysis of the products. The kerogens yielded primarily aliphatic C2–C14 α,ω-dicarboxylic acids and benzene mono-to-pentacarboxylic acids. Yields of aliphatic dicarboxylic acids from kerogen decreased with increasing thermal alteration. Yields of benzenecarboxylic acids increased steadily with increasing thermal alteration. The data support the concept that thermal maturation during natural burial of this type of kerogen results in the generation of aliphatic hydrocarbons from an increasingly aromatic residue.  相似文献   

3.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

4.
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250–500°C).Degradation products of less altered kerogens are dominated by normal C4–C15 α,ω-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of α,ω-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed.As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens.Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (DENNIS et al., 1982).  相似文献   

5.
Alkaline potassium permanganate oxidation of a young kerogen (lacustrine) and 34 model compounds (saturated and unsaturated fatty acids, hydroxy acid, aliphatic dicarboxylic acids, aliphatic alcohols, normal hydrocarbon, β-carotene, phenolic acids, benzenecarboxylic acids, carbohydrates, amino acids and proteins) were conducted, followed by GC and GC-MS analysis of the degradation products. The stability of the degradation products of kerogen in permanganate solution and the relationship between degradation products and kerogen building blocks were determined.The results showed that aliphatic acids C12–C16 monocarboxylic acids and C6–C10 α,ω-dicarboxylic acids) were rather susceptible to oxidation compared with benzenecarboxylic acids and the former were degraded into lower molecular weight decarboxylic acids. It was concluded that oxidation at milder conditions (60° C, 1 hr) is appropriate for qualitative and quantitative characterization of the aliphatic structure of young kerogen. It was noteworthy that benzoic acid was produced in a significant amount by oxidation of amino acids (phenylalanine) and proteins, C18-isoprenoidal ketone from phytol, and C8 and C9 α,ω-dicarboxylic acids from unsaturated fatty acids, respectively; furthermore, 2,2-dimethyl succinic and 2,2-dimethyl glutaric acids were produced from β-carotene.  相似文献   

6.
The ratio of the abundance of the C19:1 isoprenoids 1-pristene and 2-pristene to the abundance of (nC17:1 + nC17:0) is significantly lower in pyrolysates of kerogens from highly anoxic depositional environments than in pyrolysates of kerogen if similar types and levels of catagenesis from more oxic organic facies. 13C-NMR analysis shows that the occurrence of lower relative concentrations of isoprenoid precursors also correlates with the occurrence of low proportions of oxygen-bonded carbon and high proportion of aliphatic carbon in kerogens. The ratio of 1-pristene to (n-C17:1 + nC17:0) can be correlated laterally and statigraphically within a basin. There is no clearly discernible dependence of relative isoprenoid concentration of kerogen type for oil-generative kerogens, although immature lignites have high 1-pristene/(nC17:1 + nC17:0) ratios.The 1-pristene/(nC17:1 + nC17:0) ratios in kerogens pyrolysates from the same organic facies decrease logarithmically with increasing catagenesis and can be correlated directly with measured vitrinite reflectance values. Geologic and experimental data imply that 1-pristene precursors are lost from kerogen more rapidly than the precursors of the C18 isoprenoid.The lower relative isoprenoid concentrations observed in anoxically deposited kerogens appear to be the result of the enhanced preservation of normal alkyl groups and the enhanced formation of free isophrenoids early in the sequence of kerogen alteration. These results are significant to the use of isoprenoids as geochemical marker oils, bitumens, and kerogens and to the determination of the structure and diagenesis of isoprenoid precursors.  相似文献   

7.
Variations in the chemical composition of sedimentary rocks and the nature of kerogen through geologic time were investigated in order to obtain information on biological and environmental evolution during the pre-Phanerozoic eon. Rock samples differing in lithology, depositional environment, and age were pulverized, pre-extracted with organic solvents, and analyzed for total nitrogen (N), phosphorus (P) and organic carbon (org. C or CT). Variations in the molecular structure of kerogen were measured by determining the ratio of org. C content after pyrolysis (CR) to org. C content before pyrolysis (CT), the CRCT ratio being considered an index of the degree of condensed-aromatic (as opposed to aliphatic) character. The rocks included mudstones (Early Archean (> 3 · 109 years old) to Miocene), carbonate rocks (mid-Proterozoic (1.3 · 109 years old) to Eocene), cherts (Early Archean (> 3 · 109 years old) to Late Proterozoic (0.8 · 109 years old)), and coal (Archean (> 2.7 · 109 years old) to Early Proterozoic (~1.8 · 109 years old)).The mudstones and carbonates showed progressive increase in org. C content with decreasing age, as reported by other investigators, but the cherts unexpectedly showed a decrease in org. C content with decreasing age. In all samples, a simple inverse correlation between CRCT ratio and org. C was observed, each rock type forming its own trend separate from but parallel to those of the other rock types. Thus, the older cherts tend to be richer in org. C and have lower CRCT ratios, but the older carbonates and mudstones are poorer in org. C and have higher CRCT ratios. For a given org. C concentration, chert has the highest CRCT ratio and carbonate rock the lowest, mudstone being intermediate; this may mean that chert is relatively ineffective as a catalyst for the thermal cracking of kerogen or that it inhibits cracking. N appears to be correlated with org. C. The relationship between CRCT ratio and org. C or N suggests that the concentrations of org. C and N in sedimentary rocks are largely determined by selective elimination of labile aliphatic and nitrogenous groups of kerogen during post-depositional maturation, although the nature, abundance and depositional environment of the organic source material must be taken into consideration as well. The observed secular variations of org. C, N and CRCT ratio may be ascribed to several possible causes, including age-dependent post-depositional alteration of kerogen, secular decrease in the CO2O2 ratio of the atmosphere and hydrosphere during pre-Phanerozoic time, secular increase in rates of accumulation of organic matter in sediments and evolutionary changes in the composition of the biological source material. The secular variations of the carbonates and mudstones could be accounted for by age-dependent cumulative effects of post-depositional alteration alone, whereas the secular variations of the cherts probably reflect changes in the nature of the biological source material and the composition of the atmosphere and hydrosphere. The available evidence suggests that primary characteristics of kerogen are better preserved in chert than in the other types of sediment.The CRCT ratios of the carbonates and cherts correlate negatively with the A465mμA665mμ absorbance ratios of “humic matter” extracted from the same rock samples with benzene—methanol. Thus, the greater the degree of condensed-aromatic character of the kerogen, the greater the degree of condensed-aromatic character of the solvent-extractable bituminous “humic matter” with which it is associated. In addition, the ratio of aliphatic to carbonyl-type groups (CH2C=O) in the extractable “humic matter” of carbonates and cherts correlates with the non-extractable org. C content of the rocks, suggesting that the org. C data are related to the degree of aliphatic character of the kerogen. The chemical similarity between extractable “humic matter” and its associated kerogen is evidence that the “humic matter” is as old as its rock matrix and can be accepted as a valid chemical fossil. It also suggests that information obtainable from kerogen may be gotten more easily, rapidly and cheaply from solvent-extractable organic matter. The mudstones showed little or no relationship between A465mμA665mμ ratio and CRCT ratio, or between CH2C=O ratio and org. C content. The data are consistent with the hypothesis that the kerogen in the carbonates and cherts is autochthonous, whereas the kerogen in the mudstones is partly allochthonous, implying the existence of soil humus and soil organisms in pre-Phanerozoic times. Moreover, the existence of coal in Archean sediments is consistent with the existence of very shallow-water and possibly terrestrial microfloras possessing adaptations for protection against ultraviolet solar radiation.The P content of the sediments showed a complicated zig-zag pattern of variation through geologic time. All the different suites of samples gave similar results, indicating that the variations represent phenomena whose effects were worldwide and independent of local environment. P levels are low in the early pre-Phanerozoic but rise with decreasing age until ~ 1 · 109 years B.P., then fall to a minimum at (~0.7–0.8) · 109 years B.P., and rise again to a lower Paleozoic (Ediacarian?) maximum, decline to a later Paleozoic minimum, and then rise again. The low P content of early pre-Phanerozoic sediments could be due to several factors, including high CO2 content of seawater, anaerobic conditions in the sea, absence of stable-shelf environments, and low rates of primary production. The minimum in the Late Proterozoic is tentatively attributed to the Late Proterozoic glaciations. The data are consistent with the theory that the glacial episode was of worldwide extent.  相似文献   

8.
An isotopic type-curve has been defined based on the 13C12C ratios of the saturated, aromatic, heterocomponent (NOSs), and asphaltene fractions of crude oils. These fractions show 13C enrichments with increasing polarity or polarizability. This systematic pattern can be used to estimate the 13C12C ratio of the kerogen from which the oil had been generated. Genetically associated source rock oil pairs have been used to show that the difference between the measured and the estimated δ-values of kerogen is about ?0.5%., and between the δ-values of the kerogen and the asphaltene fraction is approximately +0.6%.  相似文献   

9.
This work presents geochemical characterization of isolated kerogen out of clay fraction using petrography studies, infrared absorption and solid state 13C nuclear magnetic resonance (NMR) spectroscopy, with N‐alkane distributions of saturated hydrocarbon. Mineralogical study of clay mineral associations was carried out using X‐ray diffraction (XRD), on Ypresian phosphatic series from Gafsa‐Metlaoui basin, Tunisia. The XRD data indicate that smectite, palygorskite and sepiolite are the prevalent clay minerals in the selected samples. In this clay mineral association, the N‐alkane (m/z = 57) distribution indicates that the marine organic matter is plankton and bacterial in origin. The kerogens observed on transmitted light microscopy, however, appear to be totally amorphous organic matter, without any appearance of biological form. The orange gel‐like amorphous organic matter with distinct edges and homogenous texture is consistent with a high degree of aliphaticity. This material has relatively intense CH2 and CH3 infrared bands in 13C NMR peaks. This aliphatic character is related to bacterial origin. Brown amorphous organic matter with diffuse edges has a lower aliphatic character than the previous kerogen, deduced from relatively low CH2 and CH3 infrared and 13C NMR band intensities.  相似文献   

10.
Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200–400°C, 2–1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300°C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.  相似文献   

11.
The vertical flux and composition of wax esters, steryl esters, triacylglycerols, and alkyldiacylglycerols in particulate matter was determined in the equatorial Atlantic Ocean by deploying sediment traps at 389, 988, 3,755 and 5,068 m. Detailed compositional analyses of these lipids were carried out by high temperature glass capillary gas chromatography and gas chromatography/mass spectrometry.The distributions of these lipids are discussed in terms of potential biological sources. Zooplankton fecal matter and intact zooplankters may represent the most important input of these compounds to the shallower two traps, while the material in the deeper two traps appears to have been biogeochemically altered. The finding of these biochemically important compounds, often unsaturated, indicates that particle transit through the water column must be relatively fast.Wax esters were most abundant in the 389 m sediment trap and decreased with increasing trap depth. Compounds ranging from C28–C44 were present at all depths. The major homologs were C32, C34 and C36, most often monounsaturated. The dominant alcohol/acid combinations in the 389 m trap were C18:1C14:0 and C18:1C16:0, but in the 988 m sample, C16:0C18:1 was the major wax ester. A flux maximum was observed for steryl esters at 988 m. Cholesteryl esters of C14:0, C16:1 and C16:0, and C18:1C18:0 fatty acids were the dominant steryl esters. For triacylglycerols, fluxes in the 389 and 988 m traps were similar, while the deeper pair of traps contained much less triacylglycerol. C46, C48, C50 and C52 compounds were the major triacylglycerols. Constituent fatty acids in the 389 m and 988 m samples were mainly C14:0, C16:1, C16:0, C18:1 and C18:0. In the 988 m material, C20:5 and C22:6 were also dominant. A homologous series of alkyldiacylglycerols was abundant in the 389 m trap material. The alkyldiacylglycerols consisted of C46–C56 compounds composed of C16:0 alkyl moieties and C14:0, C16:0, C18:1, and C18:0 fatty acids.  相似文献   

12.
Polyunsaturated fatty acids (C18:2 and C18:3ω3 were analyzed in the upper 20m layer of a 200 m long sediment core taken from Lake Biwa. Concentration maxima occur in layers at depths of 0.2, 1–5, 11–12, and 16m. The vertical changes in the (C18:2C(C18:0 ratio appear to correlate with paleoclimatic condition suggested from palynological evidence. On the basis of C18:2C18:0 ratios, it was suggested that it has been colder at 200, 1000–4000, 15,000 and 20,000 yr BP than at other times.  相似文献   

13.
An infrared routine has been developed to estimate the aliphatic portion of kerogen carbon in sedimentary rocks. The procedure does not require isolation of the organic matter and is based on a computer-assisted determination of global band areas in the region of the aliphatic carbon-hydrogen stretching vibrations around 2900cm−1. From these integrated absorptions the amount of aliphatic carbon Cal (mg of aliphatic carbon per gram of solvent-extracted rock) is calculated by means of a calibration with model rocks. Carbonate overtones which interfere in the case of limestones are eliminated by comparison to a CaCO3 standard.The method has been applied to rocks containing kerogens of different types and maturities at TOC levels of 0.5 to 12%. The aliphatic carbon concentrations range from 0.5 to 60mg·g−1 and correlate reasonably well with the residual genetic potentials of the rocks as measured by S2 values from Rock-Eval pyrolysis. The ratio S2/Cal is found to decrease with burial depth reflecting a maturity enhanced conversion of aliphatic carbon to fixed aromatic carbon under Rock-Eval conditions.  相似文献   

14.
Stable isotope ratios of C, N and H, elemental compositions and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of δ13C and HC ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The δ15N values are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.  相似文献   

15.
This study deals mainly with shale-sandstone series in which the disseminated kerogen is mostly composed of land-derived debris. Organic matter was characterized by microscopic and chemical techniques. The kerogen maturity was assessed by microscopic studies, mainly by means of vitrinite reflectance measurements. The chemical properties of shale kerogens and of oil and gas shows, were examined in several sedimentary basins in different parts of the world.Oil and gas properties were tentatively interpreted in terms of maturity, using a comparison of oil properties with the kerogen features of shales interbedded in the impregnated sandstone reservoirs. The synthesis is documented in several case histories including those from New Zealand, Colombia, Australia, Indonesia.In low maturity stages (immature zone), dry gas with minor condensate is observed, whereas in higher maturity levels (oil window), wet gas with high paraffinic crudes is generally recorded. Pristane to n-C17 ratios allow a distinction to be made between immature (often > 1.0) and mature (< 1.0) condensates, i.e. intensively cracked crude oils. I-C4 to n-C4 ratios enable an adequate discrimination to be made between gases produced with immature condensates (i-C4n-C4 > 0.80) and those produced with high wax crudes or mature condensates (i-C4n-C4 < 0.80). Shallow depth condensates and their related gases have been identified as immature fluids. Properties of some mature condensates are given as references.This study offers a maturity framework as a guide for oil and gas show prediction in shale-sandstone sequences containing land-derived kerogen.  相似文献   

16.
Kerogen isolated from stromatolitic, microfossiliferous chert of the Paradise Creek Formation (ca. 1500 m.y. old; Queensland, Australia) was exposed to 14C-labelled organic compounds (hexadecane, heptanoic acid, ribose, or serine) at elevated and room temperatures for periods up to four days. The labelled compounds were then extracted and the kerogen was analyzed to determine the amount of radioactivity remaining. Results show that kerogen can be irreversibly contaminated by younger organic compounds. The level of contamination was highest with the hydrocarbon, followed by the amino acid and the sugar; there was no irreversible contamination by the fatty acid. The maximum observed contamination level was 60 μg hexadecane/g kerogen; calculations suggest that similar contamination levels may occur under natural conditions, especially in clastic sediments. Contamination levels of this magnitude are insufficient to affect isotopic or major elemental analyses of kerogens significantly, but could produce spurious results in analyses (in the ppm range) of the organic chemical composition of kerogens.  相似文献   

17.
Rock-Eval pyrolysis was performed on lithotype and depth profiles of Tertiary brown coals and a coalification profile of Permian bituminous coals. The humic acid and kerogen fractions from the coals are also investigated by this technique along with the effect of base extraction on the kerogen fraction. Structural variations between brown coal lithotypes are primarily reflected by changes in Oxygen Index Value. This result was supported by the results from the depth profile (same lithotype). A wide range of Hydrogen Indices (independent of depth) but similar Oxygen Indices were observed. The results from the Qualification profile show that the Oxygen Indices varied with rank, whereas Hydrogen Indices show a greater dependence on coal type. A plot of HCversus Hydrogen Index produced good correlations with the brown (0.77) and bituminous (0.90) samples lying on two separate lines intersecting at high H/C. This result (and higher correlation for bituminous samples) reflects the expected dependence of hydrogen index on oxygen content (present primarily as hydroxyl groups). A high correlation (0.95) between quantitative IR data (K 2920 cm mg?1) and Hydrogen Indices supports previous conclusions regarding the dependence of Hydrogen Indices on the aliphatic structure of the samples.  相似文献   

18.
The sterane and triterpane distributions of three bituminous chalks from the Upper Cretaceous Ghareb Formation (Israel) were investigated both in the original extractable bitumens and in extracts obtained after pyrolysis of whole rock and isolated kerogen samples at 450°C. Pyrolysis was performed in a closed system under hydrous (whole rock) and anhydrous conditions (isolated kerogens). The carbon number distributions of steranes and triterpanes differ significantly between original bitumen and pyrolyzates. Unlike the bitumens in which diasteranes were not detected, the anhydrous pyrolyzates contain small amounts of diasteranes. The presence of water during pyrolysis leads to an increase of sterane isomerization, the abundant formation of diasteranes and an increase of the 18α(H)-trisnorneohopane17α(H)-trisnorhopane ratio. Sterane isomerization maturation parameters show a closer match between original bitumen and pyrolyzates after pyrolysis in a closed system when compared with an open system.  相似文献   

19.
A 33 step alkaline permanganate degradation of the kerogen from Moroccan Timahdit oil shale (M-Zone) was carried out. A very high total yield of oxidation products was obtained (95.4% based on original kerogen). Detailed GC-MS analyses of ether-soluble acids, acids isolated from aqueous solutions and soluble products of further controlled permanganate dedradation of precipitated, ether-insoluble acids, served as a basis for the quantitative estimation of the participation of various types of products and for comparison with other kerogens. The most interesting finding was the observed uniquely high yield of aromatic oxidation products from an intermediate type I–II kerogen. Taking into account the almost equally dominant aliphatic (50.2%) and aromatic (43.2%) nature of the acidic oxidation products, the existence of an aliphatic cross-linked nucleus mixed with cross-linked aromatic units in the Timahdit shale kerogen is postulated. Uniform distribution of oxidation products throughout the degradation suggested a similar reactivity of the various kerogen constituents towards alkaline permanganate.  相似文献   

20.
Solid state 13C NMR techniques of cross polarization with magic-angle spinning, and interrupted decoupling have been employed to examine the nature of the organic matter in eight kerogen concentrates representing five Tertiary deposits in Queensland, Australia. The NMR results show that five of the kerogens have high proportions of aliphatic carbon in their organic matter and correspond to Type I–II algal kerogens. Three of the kerogens, derived from carbonaceous shales, have a high proportion of aromatic carbon in their organic matter and correspond to Type III kerogens. The fractions of aliphatic carbon in all the kerogens, regardless of type, are shown to correlate with the conversion characteristics of the corresponding raw shales during Fischer assay. Interrupted decoupling NMR results show the presence of more oxygen-substituted carbon in the carbonaceous shales, which may account for the greater CO2 evolution and phenolic materials found in the pyrolysis products of the carbonaceous shales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号