首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents new experimental results on surface chemistry of reacting minerals and interface kinetics between mineral and aqueous solutions. These experiments were carried out using a flow reactor (packed bed reactor) of an open system as well as a continuous stirred tank reactor, CSTR. The authors measured reaction rates of such minerals as zeolite, albite and carbonate (rhodochrosite, dolomite) in various solutions, and tested corresponding mineral surface by using SEM, XPS, SIMS, etc. This paper mainly presents the experimental results of zeolite dissolution in water and in low pH solutions at room temperature, and dolomite dissolution at elevated temperatures. The results show that the release rates of Si, Al and Na of zeolite are different in most cases. The incongruent dissolution of zeolite is related to surface chemical modifications. The Na, Al and Si release rates for dissolution of albite and zeolite in water and various solutions were measured as a function of temperature, flow veloci  相似文献   

2.
This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400℃ and a constant pressure of 23 MPa. Kinetic experiments were carried out by using a flow reactor (packed bed reactor) of an open system. The dissolution rates of albite and magnetite were measured under these experimental conditions. Na, Al and Si release rates for albite dissolution in water were measured as a function of the temperature and flow velocity in the reaction system. The maximum release rates of Na, AI and Si of albite dissolution in the hydrothermal flow systems under different flow velocities were always obtained at 300℃, that is to say, the maximum albite dissolution rates in the flow systems, regardless of different flow rates, were repeatedly measured at 300℃. Results indicate a wide fluctuation in albite dissolution rates occurring close to the critical point of water. The dissolution rates increased when the temperatu  相似文献   

3.
Al/Si interdiffusion in albite: effect of pressure and the role of hydrogen   总被引:1,自引:0,他引:1  
The effect of pressure on the rate of Al/Si disorder in albite has been determined at temperatures from 800° C to 1050° C and at pressures up to 24 kbar, using dried samples in welded Pt containers, in piston-cylinder devices and internally-heated gas apparatus. In the piston-cylinder device with NaCl medium, the effect of pressure is profound. A pure low albite from Clear Creek, California reaches the equilibrium state of disorder at 850° C and 22 kbar in 10 h, whereas at 6 kbar it has not equilibrated in three weeks, and at one bar it probably cannot be disordered at 850° C in the laboratory. The enhancement of Al/Si interdiffusion takes place under dry conditions: any H2O penetrating the samples would have produced melting, and none was observed. Hydrogen, however, is produced by dissociation of moisture in the pressure medium and can penetrate the Pt sample capsules. If the samples are deprived of hydrogen by replacing NaCl with glass or by embedding the samples in a hydrogen getter such as Fe2O3 or ZnO, the order-disorder reaction is greatly inhibited.A mechanism is suggested in which OH groups are formed by hydrogen hopping in albite. The smaller charge on the tetrahedral complex induces transient coordination of Al greater than four at elevated pressures, facilitating Al/Si interchange during the bond-breaking process. This results in an exponential pressure dependence of diffusion. It is also suggested that the presence of hydrogen at high pressures can greatly effect the mechanical properties and reactivity of deep crustal and mantle rocks. In nature, as well as in the laboratory, equilibration at elevated pressures may be as much dependent on the availability of hydrogen as on time or temperature.  相似文献   

4.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   

5.
Calculations of the equilibrium distribution of Al, Si in the albite framework based on quasi-chemical theories of order, disorder transformations (Yang 1945; Yang and Li 1947; Li 1949) were made for a two-dimensional framework model. The ordering is caused by the energy of Al, Si interchange between sites of different crystal-chemical types and the energy of nearest neighbour interaction. By taking into account the decrease in the energy of interchange between sites with increasing disordering and with increasing temperature, and by examining different relationships for site-to-site interchange energy and the nearest neighbour interaction, it is possible to understand the basic characteristics of the transformation from low (essentially ordered) to high (essentially disordered) albite as revealed by experiment. These characteristics are: (1) abrupt variation of the equilibrium degree of order within a narrow temperature range and possible first order phase transformation for the transition from low-albite to high-albite, (2) hysteresis of the synthetic high albite transformation path and of the low albite hydrothermal “annealing” path, (3) presence of a temperature range where high albite is stable and has a continually changing equilibrium degree of order.  相似文献   

6.
Solid-state 27Al, 29Si and 23Na MAS NMR spectra have been obtained for an Al,Si ordered low albite to low microcline ion exchange series for which unit-cell parameters and 29Si NMR data have previously been reported. 27Al δi vary continuously with composition from 63.4 (±0.5) ppm for albite to 58.9 (±0.5) ppm for microcline, and parallel the 29Si chemical shifts assigned to the T2m-site. The 27Al and 29Si chemical shifts for this series correlate well with composition-dependent lattice parameters, most notably cell volume and the angle [201]1b. The linewidths of the 29Si and 27Al resonances indicate a significant amount of structural disorder in the intermediate compositions due to Na, K substitution. The 1 σ width of the distribution of average Si-O-T angles for each T-site is estimated to be about 1° for the Or33 sample. The average 23Na δi varies monotonically from -8.5 (±1) ppm for albite to -24.3 (±1)ppm for Or83. Similarly, the average 23Na nuclear quadrupole coupling constant decreases from 2.60 to 1.15 (±0.05) MHz and the asymmetry parameter of the electric field gradient increases from 0.25 to 0.6 with increasing K-content from albite to Or83. The observed variations in the quadrupole coupling parameters are consistent with simple electrostatic calculations. Higher resolution 23Na spectra of the intermediate compositions obtained at 11.7 T indicate the presence of an inhomogeneous linebroadening which is related to the distribution of Na-environments. A model based on a random distribution of local compositions does not simulate the spectra, suggesting that the distribution of Na is skewed toward Na-rich clusters. Observation of the 23Na NMR lineshape of Or49 after short periods of heat treatment indicate that 23Na NMR is very sensitive to the changes in the Na, K distribution accompanying the early stages of exsolution. Reversible changes occur after heating at 530° C for 3 h, whereas heating at 600° C produces no changes, possibly bracketing the position of the coherent spinodal for Al, Si ordered alkali feldspars at this composition.  相似文献   

7.
鄂尔多斯盆地延长组储层砂岩发育大量自生钠长石矿物,其成因和产出与浊沸石有关,含量和分布比浊沸石多而广泛,但没有引起人们的注意。大量详细岩相学观察发现延长组储层砂岩发育丰富的自生钠长石,其主要为由斜长石碎屑蚀变形成或呈胶结物充填分布在砂岩碎屑颗粒之间。钠长石中含有大量原生的发亮黄色荧光的油气包裹体,表明其形成与油气注入同时。电子探针成分分析表明,钠长石Na2O含量较高,几乎为斜长石的纯钠长石端员(NaAlSi3O8),没有钙长石端员(CaAl2Si2O8)。激光拉曼光谱特征反映出钠长石为沉积成岩期形成的低温钠长石,而非来源于岩浆岩或者变质岩区的碎屑钠长石。应用LA-MC-ICP/MS原位微分析技术对钠长石进行的稀土元素分析表明,延长组砂岩钠长石具有热水成岩作用地球化学特征,属于热液成岩作用产物。认为大量钠长石形成与石油充注的同时进行导致了储层致密过程中岩性油藏的形成。延长组储层砂岩中热液成岩作用对油藏形成和分布意义重大,值得重视和研究。  相似文献   

8.
The diffraction, n.q.r. and optical data on plagioclase feldspars are used to derive kinetic interpretations of structural changes induced by laboratory heat treatment and by geological processes. For anorthite, the Si, Al configuration is essentially ordered except for unusual transient processes. Cooperation between Ca atoms, and random nucleation, produces a domain texture in the primitive structure which is highly sensitive to temperature. The rapid inversion from the primitive to the body-centered structure is explained by increasingly rapid “rattling” of the Ca ions in the interstices of the semi-flexible alumino-silicate framework. The weakening of “b” reflections at higher temperatures is ascribed to incipient Si, Al disorder associated with irregular vibration of the alumino-silicate framework and the Ca atoms. Quenching phenomena are explained by variation of the domain boundary texture inherited from disorder at high temperature. For albite, the Si, Al configuration changes sluggishly from an ordered to a disordered pattern, and vice versa. Kinetic data are reinterpreted using a model in which the cell dimensions depend on local rather than distant order: the major change in distant order is deduced to occur at 450–600° C. Sodic plagioclase grown at high temperature shows distant disorder of the atoms, but cell dimensions suggest development of strong local order for calcic compositions. Low-entropy plagioclases of intermediate composition show complex intergrowths and domain structures because of kinetic barriers to atomic diffusion. X-ray diffraction data for slowly-cooled specimens are consistent with nucleation of albite- and anorthite-like regions from a high-temperature disordered phase. Electrostatic energy calculations show that Na and Ca atoms, although they face smaller energy barriers for diffusion, cannot form domains until the Si and Al atoms have moved jointly. The Si, Al ordering patterns of low albite and anorthite are topologically incompatible in a continuous framework if oxygen is not to be bonded to two Al. Therefore domains of low-albite and anorthite must be separated by disordered boundaries. For intermediate compositions, An15-An75, domains remain small. The anorthite-like domains probably form at higher temperatures than the albite-like domains. The latter tend to be about the same size for all bulk compositions. The atomic positions are influenced by neighboring atoms. Upon heating rapidly, Si and Al atoms remain in position and provide a memory for reformation of an identical structure upon cooling. The framework changes shape, and some Na, Ca atoms inter-diffuse to yield a quasi-homogeneous structure with a diffraction pattern which qualitatively approaches that of high albite. Upon prolonged heating at high temperature, Si, Al atoms inter-diffuse producing nonquenchable changes to the high-albite structure. At Na-rich bulk compositions, some domains of low albite grow into large lamellae while others remain small in contact with anorthite domains producing alternate lamellae of intermediate structure type; hence the peristerite intergrowth. A similar but opposite process could cause an intergrowth of lamellae of anorthite structure interposed with an intermediate type structure. A unique low plagioclase series is not expected. Plagioclases of intermediate composition trend towards slightly different endproducts depending on the details of the cooling history. Breaks and bends in plots of physical properties, and intergrowths for certain specimens, depend on special compositional, growth and annealing factors. The intergrowth responsible for iridescence of intermediate plagioclase is ascribed to Na, K segregation prior to development of the complex domain structure. Prolonged annealing at high temperature in a dry environment is suggested. It is futile to attempt to describe low entropy plagioclases in terms of classical thermodynamics: only a kinetic interpretation based on atomic and sub-microscopic textural factors can be viable.  相似文献   

9.
The free energy, entropy and enthalpy of sodium feldspar in thermal equilibrium and in metastable states are derived from investigations of the heat capacities of albite, analbite, ordered and disordered Or31. The lattice strains of all stable and metastable states are calculated from the two-order parameter theory published in the preceding paper. This approach also allows one to distinguish between the influence of Al, Si order and of the displacive lattice distortion on the thermodynamic behaviour of albite. The thermal cross-over between high albite and low albite is found to be a smooth function of temperature.  相似文献   

10.
The more rapid dissolution of Ca-rich feldspars relative to Na, K-rich feldspars has been attributed to the preferential leaching of Al deep within the feldspar structure. Evidence from surface microanalysis (e.g., Hellmann et al., 2003), however, shows that preferential dissolution of Al is confined to the top layers of the feldspar lattice and that the amorphous surface layer most likely results from precipitation versus dissolution. It is thus critical to examine the extent of preferential Al removal. Here we present a theoretical study of plagioclase dissolution behavior using parameterized Monte Carlo simulations. Two different dissolution mechanisms, a mechanism involving preferential leaching of Al and an interfacial dissolution-reprecipitation mechanism, are tested using compositions representing the entire plagioclase solid solution series. Our modeling results indicate that under the control of the preferential Al leaching mechanism, the influence of (Al, Si) disorder on the dissolution rate is significant. At a fixed composition, an increase in the degree of (Al, Si) disorder yields an increased dissolution rate, with an 8-fold increase in dissolution rate observed for highly disordered albite (An0) compared to low albite. Increasing anorthite content tends to decrease the variation in the dissolution rate due to disorder. The difference in the dissolution rate of 293 tested oligoclase configurations with a composition of An20 is 3-fold, and the difference is reduced to 2-fold among 107 andesine configurations of An30. Furthermore, feldspar configurations with completely disordered (Al, Si) distributions yield a consistent log-linear dependence of dissolution rate on the anorthite content (An), while other feldspar configurations with modest degrees of (Al, Si) disorder exhibit rates less than this trend. In contrast, when Al removal is confined to the top surface layers, a variety of feldspar configurations with different (Al, Si) disorder but a single fixed composition have similar dissolution rates; and the dissolution rate of Ca-rich feldspars departs positively from its log-linear relationship with anorthite content. This departure occurs around An80 and is in good agreement with previous experimental studies. Subsequent modeling results of aluminum inhibition, ΔG dependence, and formation of altered surface layers in the framework of the interfacial dissolution-reprecipitation mechanism are all comparable with experimental investigations, and these results suggest that an interfacial dissolution-reprecipitation mechanism governs the dissolution of plagioclase feldspars.  相似文献   

11.
The disordering kinetics of Al/Si in albite depend on how the samples are dried, and thus on the presence of trace amounts of water. The disordering rate increases with water content and confining pressure. At 10 kb the activation energy is about 67 kcal/mole compared to about 87 kcal/mole for samples disordered in air. Simultaneous plastic deformation increases the disordering rate and the effect is most pronounced below 900° C at 10?6/s. Some albite ordering and microcline disordering experiments show similar kinetic behavior. These results are significant for interpreting the structural state and the high-temperature deformation of feldspars.  相似文献   

12.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

13.
This study reports the kinetic experimental results of albite in water and in KCI solution at 22 MPa in the temperature range of 25 to 400℃. Kinetic experiments have been carried out in an open flow-through reaction system (packed bed reactor). Albite dissolution is always incongruent in water at most temperatures, but becomes congruent at 300℃ (close to the critical point 374℃). At temperatures from 25 to 300℃, the incongruent dissolution of albite is reflected by the fact that sodium and aluminum are easily dissolved into water; from 300 to 400℃ it is reflected by silicon being more easily dissolved in water than Al and Na. Maximum albite dissolution rates in the flow hydrothermal systems have been repeatedly observed at 300℃, independent of flow rates.The kinetic experiments of albite dissolution in a KCl aqueous solution (0.1 mol KCl) indicate that the dissolution rate of albite increases with increasing temperature. Maximum silicon release rates of albite have been observed at 400℃, while ma  相似文献   

14.
The formation of late‐stage veins can yield valuable information about the movement and composition of fluids during uplift and exhumation of high‐pressure terranes. Albite veins are especially suited to this purpose because they are ubiquitously associated with the greenschist facies overprint in high‐pressure rocks. Albite veins in retrogressed metabasic rocks from high‐pressure ophiolitic units of Alpine Corsica (France) are nearly monomineralic, and have distinct alteration haloes composed of actinolite + epidote + chlorite + albite. Estimated PT conditions of albite vein formation are 478 ± 31 °C and 0.37 ± 0.14 GPa. The PT estimates and petrographic constraints indicate that the albite veins formed after the regional greenschist facies retrogression, in response to continued decompression and exhumation of the terrane. Stable isotope geochemistry of the albite veins, their associated alteration haloes and unaltered hostrocks indicates that the vein‐forming fluid was derived from the ophiolite units and probably from the metabasalts within each ophiolite slice. That the vein‐forming fluid was locally derived means that a viable source of fluid to form the veins was retained in the rocks during high‐pressure metamorphism, indicating that the rocks did not completely dehydrate. This conclusion is supported by the observation of abundant lawsonite at the highest metamorphic grades. Fluids were liberated during retrogression via decompression dehydration reactions such as those that break down hydrous high‐pressure minerals like lawsonite. Albite precipitation into veins is sensitive to the solubility and speciation of Al, which is more pressure sensitive than other factors which might influence albite vein formation such as silica saturation or Na:K fluid ratios. Hydraulic fracturing in response to fluid generation during decompression was probably the main mechanism of vein formation. The associated pressure decrease with fracturing and fluid decompression may also have been sufficient to change the solubility of Al and drive albite precipitation in fracture systems.  相似文献   

15.
The concentrations of Na, Al, and Si in an aqueous fluid in equilibrium with natural albite, paragonite, and quartz have been measured between 350°C and 500°C and 1 to 2.5 kbar. Si is the dominant solute in solution and is near values reported for quartz solubility in pure H2O. At 1 kbar the concentrations of Na and Al remain fairly constant from 350°C to 425°C but then decrease at 450°C. At 2 kbar, Na increases slightly with increasing temperature while Al remains nearly constant. Concentrations of Si, Na, and Al all increase with increasing pressure at constant temperature.The molality of Al is close to that of Na and is nearly a log unit greater than calculated molalities assuming Al(OH)03 is the dominant Al species. This indicates a Na-Al complex is the dominant Al species in solution as shown by Anderson and Burnham (1983) at higher temperature and pressure. The complex can be written as NaAl(OH)04 ± nSiO2 where n is the number of Si atoms in the complex. The value of n is not well constrained but appears to be less than or equal to 3.The results indicate Al can be readily transported in pure H2O solutions at temperatures and pressures as low as 350°C and 1 kbar.  相似文献   

16.
The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm−1 in K-feldspar formed in normal 16O aqueous solution to ~457 cm−1 in the K-feldspar formed in 18O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.  相似文献   

17.
In the alkali feldspars of the amphibolite- and granulite-facies rocks of Sri Lanka, a late-stage, final exsolution event is observed which produced film lamellae and fine-scale spindles. These were investigated by optical, microprobe, single-crystal, transmission electron microscopy and atomic resolution microscopy techniques. The lamellae and spindles exsolved below the coherent solvus at temperatures as low as 300 to 350° C. Precession photographs and ARM micrographs show that the intergrowth is perfectly coherent. In sections (010) the rhombic section of the Pericline twins corresponds to analbite or high albite. The albite lamellae and spindles nucleated and grew at low temperatures in a metastable disordered structural state within a tweed-orthoclase matrix and became periodically twinned analbite or high albite, which subsequently developed only a slight increase in Al, Si order. The relationship between twin periodicity and lamellar width, predicted for coherent intergrowths by Willaime and Gandais (1972), is obeyed. In Or-rich grains, in which coherent exsolution is the only exsolution event, the film lamellae tend to be restricted to the rim, the fine-scale spindles to the centre of the grains. The films nucleated heterogeneously at grain boundaries and grew towards the grain centres. Fine-scale spindles probably nucleated homogeneously in the interior part of grains. Heterogeneous nucleation and coherent growth are not mutually exclusive.  相似文献   

18.
Batch reactor experiments were conducted to assess perthitic alkali-feldspar dissolution and secondary mineral formation in an initially acidic fluid (pH = 3.1) at 200 °C and 300 bars. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. Solid reaction products were retrieved from two identical experiments terminated after 5 and 78 days. Scanning electron microscopy revealed dissolution features and significant secondary mineral coverage on feldspar surfaces. Boehmite and kaolinite were identified as secondary minerals by X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy analysis of alkali-feldspar surfaces before and after reaction showed a trend of increasing Al/Si ratios and decreasing K/Al ratios with reaction progress, consistent with the formation of boehmite and kaolinite.Saturation indices of feldspars and secondary minerals suggest that albite dissolution occurred throughout the experiments, while K-feldspar exceeded saturation after 216 h of reaction. Reactions proceeded slowly and full equilibrium was not achieved, the relatively high temperature of the experiments notwithstanding. Thus, time series observations indicate continuous supersaturation with respect to boehmite and kaolinite, although the extent of this decreased with reaction progress as the driving force for albite dissolution decreased. The first experimental evidence of metastable co-existence of boehmite, kaolinite and alkali feldspar in the feldspar hydrolysis system is consistent with theoretical models of mineral dissolution/precipitation kinetics where the ratio of the secondary mineral precipitation rate constant to the rate constant of feldspar dissolution is well below unity. This has important implications for modeling the time-dependent evolution of feldspar dissolution and secondary mineral formation in natural systems.  相似文献   

19.
为详细探讨含钠长石翡翠的成因机制,笔者选取了若干来自缅甸的含钠长石翡翠,对其进行了详细的岩相学、矿物化学等方面的研究。含钠长石翡翠样品属于豆青种,主要由硬玉、钠长石、方沸石和少量的多硅白云母、钡铝硅酸盐等矿物组成。其中的硬玉发育清晰的环带结构,成分从核部至边缘发生规律性的成分变化。翡翠同时受到两期后期流体活动的改造,第一期以钠长石为代表,第二期以方沸石为代表,流体的改造作用使硬玉呈现碎裂状、碎斑状结构和交代穿孔等结构。结果表明,含钠长石翡翠样品表现出从成岩流体中直接结晶的特点,该流体富集Na、Al、Si、K、Ba以及少量的Ca、Fe、Mg等元素,微量元素则相对富集LREE、HFSE和sr等元素。结合前人的研究结果以及该玉石中的矿物反应关系,笔者推测缅甸翡翠形成的压力和温度范围分别在6-14kbar和300℃-450℃。  相似文献   

20.
Euhedral, post-depositional albite from the Eastern and Western Alps, the western Carpathians and some Greek islands was examined petrographically and geochemically to gain insights into the nature of feldspar reactions in carbonate rocks. This study focuses on coarsely crystalline, homogeneously nucleated albite in order to avoid problems related to the presence of inseparable detrital material in fine-grained albite varieties. All albite samples show a very restricted compositional variability and are typically ≥ 99 mol% Ab component. Unit-cell parameters determined by Rietveld analysis are slightly more variable than previously accepted, but confirm high Al–Si ordering characteristic of low albite. The oxygen isotopic composition of albite ranges from + 19·4‰ to + 28·3‰ VSMOW. There is no direct relationship between the δ18O value and the inferred temperature of albite formation, nor is there one with stoichiometry. The coarse crystal size (up to several millimetres in diameter), petrographic evidence showing albite cross-cutting stylolites, greater abundance of albite in carbonate rocks subject to high-grade diagenetic or weak metamorphic overprinting and available fluid inclusion data suggest that albite precipitation is favoured at higher temperatures in carbonates than in sandstones. Pore fluids were invariably brines, as suggested by the inferred high positive δ18Ofluid values, the common association of albite-bearing carbonates and evaporites and reports of saline fluid inclusions in albite. The presence of authigenic albite may thus be a useful tracer of palaeobrine–carbonate reactions, particularly in deep-burial and incipient metamorphic settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号