首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Frequency distributions and correlations of solar X-ray flare parameters   总被引:3,自引:0,他引:3  
We have determined frequency distributions of flare parameters from over 12000 solar flares recorded with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) satellite. These parameters include the flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons (the latter two computed assuming a thick-target flare model). The energies were computed above a threshold energy between 25 and 50 keV. All of the distributions can be represented by power laws above the HXRBS sensitivity threshold. Correlations among these parameters are determined from linear regression fits as well as from the slopes of the frequency distributions. Variations of the frequency distributions were investigated with respect to the solar activity cycle.Theoretical models for the frequency distribution of flare parameters depend on the probability of flaring and the temporal evolution of the flare energy build-up. Our results are consistent with stochastic flaring and exponential energy build-up, with an average build-up time constant that is 0.5 times the mean time between flares. The measured distributions of flares are also consistent with predicted distributions of flares from computer simulations of avalanche models that are governed by the principle of self-organized criticality.  相似文献   

2.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

3.
It was recently pointed out that the distribution of times between solar flares (the flare waiting-time distribution) follows a power law for long waiting times. Based on 25 years of soft X-ray flares observed by Geostationary Operational Environmental Satellite instruments, it is shown that (1) the waiting-time distribution of flares is consistent with a time-dependent Poisson process and (2) the fraction of time the Sun spends with different flaring rates approximately follows an exponential distribution. The second result is a new phenomenological law for flares. It is shown analytically how the observed power-law behavior of the waiting times originates in the exponential distribution of flaring rates. These results are argued to be consistent with a nonstationary avalanche model for flares.  相似文献   

4.
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona.Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to coronal heating, coronal seismology, solar flares and coronal mass ejections(CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations and helicity of filaments. With high-resolution and highsensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments.  相似文献   

5.
EVOLUTION OF MAGNETIC HELICITY IN MAGNETIC RECONNECTION   总被引:1,自引:0,他引:1  
Hu  Y. Q.  Xia  L. D.  Li  X.  Wang  J. X.  Ai  G. X. 《Solar physics》1997,170(2):283-298
This paper presents a definition of magnetic helicity specifically for two-dimensional magnetic fields and derives the associated helicity equation. The newly defined helicity is closely related to its three-dimensional counterpart and serves as a measure of the shear of magnetic field. Based on this, a numerical simulation is carried out on magnetic reconnection occurring in the lower solar atmosphere. It is found that the helicity dissipation due to magnetic reconnection is very small. A large amount of helicity is transferred upward and escapes from the domain of the solution, and the total helicity is approximately conserved during the magnetic reconnection and helicity transfer. This is in support of the applicability of a postulate, which was proposed by Taylor (1974, 1986) concerning the approximate conservation of magnetic helicity in the presence of resistive dissipation and magnetic reconnection in a highly conductive laboratory plasma, to the solar atmosphere.  相似文献   

6.
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares   总被引:1,自引:0,他引:1  
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.  相似文献   

7.
The observed power-law distributions of solar-flare parameters can be interpreted in terms of a nonlinear dissipative system in a state of self-organized criticality (SOC). We present a universal analytical model of an SOC process that is governed by three conditions: i) a multiplicative or exponential growth phase, ii) a randomly interrupted termination of the growth phase, and iii) a linear decay phase. This basic concept approximately reproduces the observed frequency distributions. We generalize it to a randomized exponential growth model, which also includes a (log-normal) distribution of threshold energies before the instability starts, as well as randomized decay times, which can reproduce both the observed occurrence-frequency distributions and the scatter of correlated parameters more realistically. With this analytical model we can efficiently perform Monte-Carlo simulations of frequency distributions and parameter correlations of SOC processes, which are simpler and faster than the iterative simulations of cellular automaton models. Solar-cycle modulations of the power-law slopes of flare-frequency distributions can be used to diagnose the thresholds and growth rates of magnetic instabilities responsible for solar flares.  相似文献   

8.
We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick–slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.  相似文献   

9.
The detection of magnetic field variations as a signature of flaring activity is one of the main goals in solar physics. Past efforts gave apparently no unambiguous observations of systematic changes. In the present study, we discuss recent results from observations that scaling laws of turbulent current helicity inside a given flaring active region change in response to large flares in that active region. Such changes can be related to the evolution of current structures by a simple geometrical argument, which has been tested using high Reynolds number direct numerical simulations of the MHD equations. Interpretation of the observed data within this picture indicates that the change in scaling behavior of the current helicity seems to be associated with a topological reorganization of the footpoint of the magnetic field loops, namely with the dissipation of small scales structures in turbulent media.  相似文献   

10.
The Magnetic Helicity Injected by Shearing Motions   总被引:1,自引:0,他引:1  
Photospheric shearing motions are one of the possible ways to inject magnetic helicity into the corona. We explore their efficiency as a function of their particular properties and those of the magnetic field configuration. Based on the work of M. A. Berger, we separate the helicity injection into two terms: twist and writhe. For shearing motions concentrated between the centers of two magnetic polarities the helicity injected by twist and writhe add up, while for spatially more extended shearing motions, such as differential rotation, twist and writhe helicity have opposite signs and partially cancel. This implies that the amount of injected helicity can change in sign with time even if the shear velocity is time independent. We confirm the amount of helicity injected by differential rotation in a bipole in the two particular cases studied by DeVore (2000), and further explore the parameter space on which this injection depends. For a given latitude, tilt and magnetic flux, the generation of helicity is slightly more efficient in young active regions than in decayed ones (up to a factor 2). The helicity injection is mostly affected by the tilt of the AR with respect to the solar equator. The total helicity injected by shearing motions, with both spatial and temporal coherence, is at most equivalent to that of a twisted flux tube having the same magnetic flux and a number of turns of 0.3. In the solar case, where the motions have not such global coherence, the injection of helicity is expected to be much smaller, while for differential rotation this maximum value reduces to 0.2 turns. We conclude that shearing motions are a relatively inefficient way to bring magnetic helicity into the corona (compared to the helicity carried by a significantly twisted flux tube).  相似文献   

11.
We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modeling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for the detection of these non-equilibrium phenomena in various spectral ranges.  相似文献   

12.
The magnetic polarity distributions in sunspot groups which produced solar proton flares have been analyzed. It is shown that the fluid motion in sunspot groups and below may be responsible for the origin of inverted or unusual polarity distributions, since rotating motion in these spot groups is often observed. Since such motion seems to produce twisting of magnetic field lines above sunspot groups, the origin of solar flares seems to be closely dependent on instability associated with this twisting of sunspot field lines in the chromosphere and the lower corona.  相似文献   

13.
We assess the predictive capabilities of various classes of avalanche models for solar flares. We demonstrate that avalanche models cannot generally be used to predict specific events because of their high sensitivity to the embedded stochastic process. We show that deterministically driven models can nevertheless alleviate this caveat and be efficiently used for predictions of large events. Our results suggest a new approach for predictions of large (typically X-class) solar flares based on simple and computationally inexpensive avalanche models.  相似文献   

14.
The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality(SOC).In this paper,we first show that,so long as the shape of the normalized light curve is not correlated with the peak flux,the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the powerlaw frequency distribution of the peak flux,which may partially explain why power-law distributions are ubiquitous in the Universe.We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different:the higher energy channel has a harder distribution than the lower energy channel,which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites.The temperature(T) distribution,on the other hand,approaches a power-law distribution with an index of 2 for high values of T.Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.  相似文献   

15.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

16.
It is well established that solar Type-II radio bursts are signatures of magnetohydrodynamical (MHD) shock waves propagating outward through the solar corona. Nevertheless, there are long-standing controversies about how these shocks are formed; solar flares and the coronal mass ejections (CMEs) are considered to be the most likely drivers. We present the results of the analysis of four solar Type-II bursts recorded between 20 January 2010 and 17 November 2011 by the Compound Astronomical Low-frequency Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO-BR) (in Brazil), which operates in the frequency range of 45?–?870 MHz. For all four solar Type-II radio bursts, which consisted of one event without band splitting and three split-band variants, the outcomes are consistent with those reported in the literature. All four Type-II radio bursts were accompanied by both solar flares and CMEs, which are associated with the impulsive phase of the flares and, very likely, with the acceleration phase of the CMEs.  相似文献   

17.
The propagation characteristics of MHD fast-mode disturbances, which can emanate from flare regions, are computed for realistic conditions of the solar corona at the times of particular flares. The path of a fast-mode disturbance is determined by the large-scale (global) coronal distributions of magnetic field and density, and can be computed by a general raytracing procedure (eikonal equation) adapted to MHD. We use the coronal (electron) density distribution calculated from daily K-coronameter data, and the coronal magnetic field calculated under the current-free approximation from magnetograph measurements of the photospheric magnetic field. We compare the path and time-development of an MHD fast-mode wavefront emitted from the flare region (as calculated from a realistic model corona for the day of the observed Moreton wave event) with actual observations of the Moreton wave event, and find that the Moreton wave can be identified with the rapidly moving intersection of the coronal fast-mode wavefront and the chromosphere (as hypothesized in our previous paper); the directivity (anisotropic propagation), as well as other characteristics of the propagation of the Moreton wave can be successfully explained.sponsored by the National Science Foundation.  相似文献   

18.
19.
The solar X-ray observing satellite Yohkoh has discovered various new dynamic features in solar flares and corona, e.g., cusp-shaped flare loops, above-the-loop-top hard X-ray sources, X-ray plasmoid ejections from impulsive flares, transient brightenings (spatially resolved microflares), X-ray jets, large scale arcade formation associated with filament eruption or coronal mass ejections, and so on. It has soon become clear that many of these features are closely related to magnetic reconnection. We can now say that Yohkoh established (at least phenomenologically) the magnetic reconnection model of flares. In this paper, we review various evidence of magnetic reconnection in solar flares and corona, and present unified model of flares on the basis of these new Yohkoh observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号