首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils.  相似文献   

2.
有限元法被广泛用于解决几何和材料非线性的问题,但标准的有限元方法难以有效解决某些材料的大变形问题和计算中的网格扭曲问题。任意拉格朗日-欧拉法(ALE法)吸取了拉格朗日和欧拉法的优点,并克服了两者的缺点,可用于解决仅用拉格朗日或欧拉有限元法所难以解决的问题。基于ALE有限元方法和弹塑性大变形基本原理,研究了岩土工程中土质边坡在自重作用下的稳定问题;计算结果不仅能直观地显示失稳时的大变形状态,并能确定较符合实际的临界滑移面形状;同时分析了含软弱夹层复杂土质边坡的稳定性。结果表明,ALE方法能有效分析土质边坡的稳定性问题,适用于岩土工程的弹塑性分析。  相似文献   

3.
Large deformation soil behavior underpins the operation and performance for a wide range of key geotechnical structures and needs to be properly considered in their modeling, analysis, and design. The material point method (MPM) has gained increasing popularity recently over conventional numerical methods such as finite element method (FEM) in tackling large deformation problems. In this study, we present a novel hierarchical coupling scheme to integrate MPM with discrete element method (DEM) for multiscale modeling of large deformation in geomechanics. The MPM is employed to treat a typical boundary value problem that may experience large deformation, and the DEM is used to derive the nonlinear material response from small strain to finite strain required by MPM for each of its material points. The proposed coupling framework not only inherits the advantages of MPM in tackling large deformation engineering problems over the use of FEM (eg, no need for remeshing to avoid mesh distortion in FEM), but also helps avoid the need for complicated, phenomenological assumptions on constitutive material models for soil exhibiting high nonlinearity at finite strain. The proposed framework lends great convenience for us to relate rich grain-scale information and key micromechanical mechanisms to macroscopic observations of granular soils over all deformation levels, from initial small-strain stage en route to large deformation regime before failure. Several classic geomechanics examples are used to demonstrate the key features the new MPM/DEM framework can offer on large deformation simulations, including biaxial compression test, rigid footing, soil-pipe interaction, and soil column collapse.  相似文献   

4.
The coupled numerical manifold method (NMM) and discontinuous deformation analysis (DDA) are enhanced to simulate deformations of continuous soil and discontinuous masonry structures. An elasto-plastic NMM-DDA is formulated that incorporates elasto-plastic constitutive laws into incremental forms of the equation of motion. A node-based uniform strain element is applied to avoid volumetric locking, which often occurs in conventional NMM-DDA. The proposed method is applied to three fundamental boundary value problems: a beam bending problem, a bearing capacity problem of a footing, and a bearing capacity problem of a masonry structure. The method is verified through comparisons with conventional solutions.  相似文献   

5.
冯春  李世海  孙厚广  李志刚 《岩土力学》2016,37(12):3608-3617
提出了一种基于颗粒接触的无网格方法(PCMM),并编制了相应的C++程序,解决了有限元等网格类方法在模拟边坡失稳滑动过程中的网格畸变问题。该方法利用颗粒离散元中的接触拓扑创建连续介质单元,通过颗粒的运动演化实现连续介质单元的自动删除及重建,通过在连续介质单元中引入考虑应变软化效应的Mohr-Coulomb模型及最大拉应力模型,实现边坡的弹塑性分析及失稳滑移过程的模拟。利用PCMM分析了均质边坡的弹塑性场、沙堆的形成过程及土质边坡的失稳过程。计算结果表明,PCMM在小变形下具有足够的精度,且在模拟材料大变形方面具有明显优势,是一种模拟边坡成灾范围的有效方法。  相似文献   

6.
An edge-based smoothed point interpolation method is adopted for coupled hydro-mechanical analysis of saturated porous media with elasto-plastic behaviour. A novel approach for the evaluation of the coupling matrix of the porous media is adopted. Stress integration is performed using the substepping method, and the modified Newton-Raphson approach is utilised to address the nonlinearities arising from the elasto-plastic constitutive model used in the formulation. Numerical examples are studied and the results are compared with analytical solutions and those obtained from the conventional finite element method (FEM) to evaluate the performance of the proposed model.  相似文献   

7.
In this paper an arbitrary Lagrangian–Eulerian (ALE) method to solve dynamic problems involving large deformation is presented. This ALE method is based upon the operator-split technique in which the material displacements and mesh displacements are uncoupled. A brief history of the ALE method is first presented and then special issues such as time-stepping, mesh refinement, energy absorbing boundaries, dynamic equilibrium checks and remapping of state variables are explained. The ALE method and the updated-lagrangian (UL) method are then used to analyse some geotechnical problems to examine the significance of inertia effects, large deformation and contact mechanics. The results show the efficiency of the ALE method for solving dynamic geotechnical problems involving large deformation.  相似文献   

8.
边坡变形破坏过程的大变形有限元分析   总被引:48,自引:14,他引:34  
在用有限元法分析边坡稳定性时,引入计算大变形问题的更新的拉格朗日方法,推导了边坡大变形弹塑性有限元分析的方程式。采用边坡某一幅值的等效塑性剪应变区,从坡脚到坡顶贯通前的折减系数作为边坡安全系数。在此基础上,采用弹塑性大变形有限元分析软件计算了均质土坡不同坡角的安全系数,将其与小变形分析的结果进行了对比分析,结果表明:用弹塑性大变形有限元分析边坡失稳破坏的过程中,既考虑了岩土材料的非线性,又考虑了边坡的几何非线性,使计算结果更趋合理。并结合东深供水改造工程BIII2边坡进行了大变形有限元分析,计算结果与勘查到的实际边坡的滑动面分布位置比较接近。研究表明:该方法尤其适宜于软土类边坡或基坑的稳定性分析。  相似文献   

9.
Analysis of large deformation of geomaterials subjected to time‐varying load poses a very difficult problem for the geotechnical profession. Conventional finite element schemes using the updated Lagrangian formulation may suffer from serious numerical difficulties when the deformation of geomaterials is significantly large such that the discretized elements are severely distorted. In this paper, an operator‐split arbitrary Lagrangian–Eulerian (ALE) finite element model is proposed for large deformation analysis of a soil mass subjected to either static or dynamic loading, where the soil is modelled as a saturated porous material with solid–fluid coupling and strong material non‐linearity. Each time step of the operator‐split ALE algorithm consists of a Lagrangian step and an Eulerian step. In the Lagrangian step, the equilibrium equation and continuity equation of the saturated soil are solved by the updated Lagrangian method. In the Eulerian step, mesh smoothing is performed for the deformed body and the state variables obtained in the updated Lagrangian step are then transferred to the new mesh system. The accuracy and efficiency of the proposed ALE method are verified by comparison of its results with the results produced by an analytical solution for one‐dimensional finite elastic consolidation of a soil column and with the results from the small strain finite element analysis and the updated Lagrangian analysis. Its performance is further illustrated by simulation of a complex problem involving the transient response of an embankment subjected to earthquake loading. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Since development of cavity expansion theory and strain path method, almost all the conventional analyses of pile penetration problem have been based on circular cross section penetrometer. However, noncylindrical pile (with noncircular cross section) is also required in geotechnical engineering such as rectangular cross‐sectional pile, X‐sectional cast‐in‐place concrete pile, H‐shaped steel pile, prefabricated vertical drains, and flat dilatometer. This paper presents a novel and general analytical approach for capturing the soil deformation mechanism around the pile with arbitrary cross section. The penetration problem is simulated by a new 2‐dimensional (radial and circumferential) cavity expansion model. Based on the theoretical framework of strain path method, the kinematics (velocity field) of the noncylindrical cavity expansion is reduced to solve the Laplace equation with arbitrary velocity boundary conditions by using the conformal mapping technique. Then, solutions for the strain and displacement, which could consider the large deformation effect, are obtained by the integration of the strain rate and velocity along the streamline. The analytical solution is validated by comparing the degenerate solution of this study with conventional circular (cylindrical) cavity expansion theory. Subsequently, typical numerical examples for the deformation mechanism of elliptical and rectangular cavity expansion are presented to prove the advantage of the proposed new solution particularly in capturing the noncylindrical symmetric displacement field. A brief application of the proposed new analytical solution to the interpretation of the smear effect of prefabricated vertical drain installation confirms its useful in geotechnical engineering.  相似文献   

11.
Peng  Chong  Wang  Shun  Wu  Wei  Yu  Hai-sui  Wang  Chun  Chen  Jian-yu 《Acta Geotechnica》2019,14(5):1269-1287
Acta Geotechnica - Smoothed particle hydrodynamics (SPH) is a meshless method gaining popularity recently in geotechnical modeling. It is suitable to solve problems involving large deformation,...  相似文献   

12.
黄土填方高边坡变形破坏机制分析   总被引:1,自引:1,他引:0  
本文依据西北某油田倒班基地黄土填方高陡边坡工程勘察, 研究了该边坡的变形破坏机制, 通过对边坡工程地质条件及变形破坏分析, 建立FLAC3D地质模型, 采用数值模拟方法研究了边坡变形破坏机制。研究结果表明, 主要变形区或破坏区为陡坎周围至其沿坡面向下20~25m 的范围之间, 其破坏深度底界为全新世填土层Q4与原状黄土Q3接触面, 但要重点控制沿坡面向下20~25m 的范围之间的变形。数值模拟结果表明, 该边坡目前整体稳定性较好, 不会发生整体变形破坏。  相似文献   

13.
Simulation of large deformation and post‐failure of geomaterial in the framework of smoothed particle hydrodynamics (SPH) are presented in this study. The Drucker–Prager model with associated and non‐associated plastic flow rules is implemented into the SPH code to describe elastic–plastic soil behavior. In contrast to previous work on SPH for solids, where the hydrostatic pressure is often estimated from density by an equation of state, this study proposes to calculate the hydrostatic pressure of soil directly from constitutive models. Results obtained in this paper show that the original SPH method, which has been successfully applied to a vast range of problems, is unable to directly solve elastic–plastic flows of soil because of the so‐called SPH tensile instability. This numerical instability may result in unrealistic fracture and particles clustering in SPH simulation. For non‐cohesive soil, the instability is not serious and can be completely removed by using a tension cracking treatment from soil constitutive model and thereby give realistic soil behavior. However, the serious tensile instability that is found in SPH application for cohesive soil requires a special treatment to overcome this problem. In this paper, an artificial stress method is applied to remove the SPH numerical instability in cohesive soil. A number of numerical tests are carried out to check the capability of SPH in the current application. Numerical results are then compared with experimental and finite element method solutions. The good agreement obtained from these comparisons suggests that SPH can be extended to general geotechnical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
邢万波  周钟  唐忠敏  孙钢 《岩土力学》2009,30(Z2):540-546
岩土工程反分析面临着多元化、复杂化和精确化的挑战,反分析方法要求能在少而精的正分析基础上结合监测数据快速反馈出数值计算参数.充分发挥支持向量回归机ν-SVR和改进的变邻域PSO算法的优势,建立起岩土工程反分析的流程和方法.同时,将其应用于锦屏左岸边坡的反分析问题,选择稳定问题非常突出的II1-II1剖面作为分析对象,根据监测资料反馈设计关键岩体的力学参数,并与监测数据比对,反演成果合理准确,进一步验证了该方法的的正确性和有效性.  相似文献   

15.
16.
This paper presents the development, calibration, and validation of a smoothed particle hydrodynamics (SPH) model for the simulation of seismically induced slope deformation under undrained condition. A constitutive model that combines the isotropic strain softening viscoplasticity and the modified Kondner and Zelasko rule is developed and implemented into SPH formulations. The developed SPH model accounts for the effects of wave propagation in the sliding mass, cyclic nonlinear behavior of soil, and progressive reduction in shear strength during sliding, which are not explicitly considered in various Newmark‐type analyses widely used in the current research and practice in geotechnical earthquake engineering. Soil parameters needed for the developed model can be calibrated using typical laboratory shear strength tests, and experimental or empirical shear modulus reduction curve and damping curve. The strain‐rate effects on soil strength are considered. The developed SPH model is validated against a readily available and well‐documented model slope test on a shaking table. The model simulated slope failure mode, acceleration response spectra, and slope deformations are in excellent agreement with the experimental data. It is thus suggested that the developed SPH model may be utilized to reliably simulate earthquake‐induced slope deformations. This paper also indicates that if implemented with appropriate constitutive models, SPH method can be used to model large‐deformation problems with high fidelity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
赵强  焦玉勇  张秀丽  谢壁婷  王龙  黄刚海 《岩土力学》2019,40(11):4515-4522
非连续变形分析方法(DDA)是一种平行于有限元法的新型数值计算方法,该方法基于最小势能原理,把每个离散块体的变形、运动和块体之间的接触统一到平衡方程中进行隐式求解。然而,传统DDA方法在计算过程中需组装整体刚度矩阵并联立求解方程组,在用于大型岩土工程问题的三维数值模拟时占用内存较大、耗时较长、计算效率极低。因此,提出一种基于显式时间积分的三维球颗粒DDA方法。该方法在求解过程中不需要组装整体刚度矩阵,在求解加速度时,由于质量矩阵为对角矩阵,可存储为一维向量占用内存较少,且可分块逐自由度求解,效率较高,在接触判断上采用最大位移准则简化了接触算法,采用较小的时步,保证了计算的精确性;通过几个典型算例验证了该方法的准确性及计算效率。  相似文献   

18.
徐栋栋  杨永涛  郑宏  邬爱清 《岩土力学》2016,37(10):2984-2992
数值流形方法(NMM)基于两套覆盖(数学和物理覆盖)和接触环路而建立,能够统一地处理岩土工程中的连续和非连续变形分析问题。与其他基于单位分解理论的数值方法一样,NMM可以自由地提高物理片上局部位移函数(多项式)的阶次,从而在不加密网格的情况下显著地提高计算精度,但有可能会使总体刚度矩阵奇异,产生线性相关问题。针对这种情况,引入了一种新的高次多项式形式的局部位移函数,在此基础上,建立了新的NMM求解体系,并应用于求解一般的弹性力学问题。结果表明:它有效地消除了线性相关问题;较之传统局部位移函数取一次多项式的NMM,达到了更高的精度;节点应力是连续的;定义在物理片上的所有自由度都具有明确的物理含义,其中第3~5个刚好是物理片所对应插值点处的应变分量,因此,直接获得此处的应力状态。该方法可以很容易地推广到其他基于单位分解的数值方法中。  相似文献   

19.
刘文连  韦立德 《岩土力学》2010,31(12):4021-4026
针对目前岩土工程中锚杆数值模型存在的局限性,受商用软件中锚杆强度模型的启发而提出了一种适用于强度折减有限元法的锚杆强度模型,并建议了考虑锚杆强度折减的强度折减方法,研制了相应程序。该模型应用于岩坡锚固计算,计算结果说明了模型的有效性;应用于土质边坡稳定性评估计算,结果表明模型方便可行。  相似文献   

20.
用区间有限元计算边坡荷载组合效应   总被引:2,自引:2,他引:0  
喻和平  徐卫亚 《岩土力学》2006,27(6):899-902
边坡工程的稳定性受多种因素的影响,其荷载具有不确定性,可以用具有上、下限的区间数来表示,提出了用区间数学和有限元结合构成的区间有限元方法来求解边坡变形。以古树包边坡的变形为例,研究了该方法的可行性,并与常规有限元计算结果进行了比较,实例计算结果表明,该方法用于计算具有不确定性参数和荷载的工程问题的变形是有效的,与常规有限元的要考虑多种工况相比,计算工作量大大减少,使用简便,而计算结果却能满足工程需要,适合计算边坡工程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号