首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
非饱和土的水力和力学特性及其弹塑性描述   总被引:6,自引:3,他引:3  
孙德安 《岩土力学》2009,30(11):3217-3231
简单回顾了非饱和土本构模型研究的发展历程,总结了近几年非饱和土弹塑性本构模型最新研究成果,重点介绍了能统一模拟非饱和土水力性状和力学性状耦合的弹塑性本构模型。通过对建立模型过程中的几个核心问题讨论,较详细地说明该类模型的结构、性能以及相关问题。非饱和土水力性状的滞回性用假定存在饱和度弹性区间的弹塑性过程来模拟;该类耦合模型不仅考虑了吸力对非饱和土水力性状和力学性状的影响,还考虑了饱和度对应力-应变关系和强度的影响以及土体变形对土-水特征曲线的影响。用同一套模型参数,耦合模型可统一预测在吸力控制或含水率控制下沿各种应力路径下非饱和土的水力-力学特性,并简单介绍了膨胀性非饱和土的弹塑性本构模型以及耦合模型在有限元数值计算中的应用。  相似文献   

3.
Although the use of blasting has become a routine in contemporary mine operations, there is a lack of knowledge on the response of cement tailings backfills subjected to sudden dynamic loading. To rationally describe such a phenomenon, a new coupled chemo‐viscoplastic cap model is proposed in the present study to describe the behavior of hydrating cemented tailings backfill under blast loading. A modified Perzyna type of visco‐plasticity model is adopted to represent the rate‐dependent behavior of the cemented tailings backfill under blast loading. A modified smooth surface cap model is consequently developed to characterize the yield of the material, which also facilitates hysteresis and full compaction as well as dilation control. Then, the viscoplastic formulation is further augmented with a variable bulk modulus derived from a Mie–Gruneisen equation of state, in order to capture the nonlinear hydrostatic response of cemented backfills subjected to high pressure. Subsequently, the material properties required in the viscoplastic cap model are coupled with a chemical model, which captures and quantifies the degree of cement hydration. Thus, the behavior of hydrating cemented backfills under the impact of blast loading can be evaluated under any curing time of interest. The validation results of the developed model show a good agreement between the experimental and the predicted results. The authors believe that the proposed model will contribute to a better understanding of the performance of cemented backfills under mine blasting and contribute to evaluating and managing the risk of failure of backfill structures under such a dynamic condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an identification technique to characterize the contractive and pore pressure behavior of loose sandy soils under seismic excitation. The technique relies on acceleration and pore pressure records provided during excitation by vertical arrays of accelerometers and pore pressure sensors. The technique employs non-parametric estimates of shear stresses and strains. A multi-surface plasticity approach is used to model the soil response. A reduced scale centrifuge model and a large scale experiment are used to demonstrate the capabilities of the developed technique. The technique allows for a more complete interpretation of the coupled shear–volume behavior of a soil deposit.  相似文献   

5.
Field injectivity tests are widely used in the oil and gas industry to obtain key formation characteristics. The prevailing approaches for injectivity test interpretation rely on traditional analytical models. A number of parameters may affect the test results and lead to interpretation difficulties. Understanding their impacts on pressure response and fracture geometry of the test is essential for accurate test interpretation. In this work, a coupled flow and geomechanics model is developed for numerical simulation of field injectivity tests. The coupled model combines a cohesive zone model for simulating fluid-driven fracture and a poro-elastic/plastic model for simulating formation behavior. The model can capture fracture propagation, fluid flow within the fracture and formation, deformation of the formation, and evolution of pore pressure and stress around the wellbore and fracture during the tests. Numerical simulations are carried out to investigate the impacts of a multitude of parameters on test behaviors. The parameters include rock permeability, the leak-off coefficient of the fracture, rock stiffness, rock toughness, rock strength, plasticity deformation, and injection rate. The sensitivity of pressure response and fracture geometry on each parameter is reported and discussed. The coupled flow and geomechanics model provides additional advantages in the understanding of the fundamental mechanisms of field injectivity tests.  相似文献   

6.
Damage induced by microcracking affects not only the mechanical behaviour of geomaterials but also their hydraulic properties. Evaluating these impacts is important for many engineering applications, such as the safety assessment of radioactive waste disposal facilities. This paper presents a new constitutive model accounting simultaneously for the impact of damage on hydraulic and mechanical properties of unsaturated poroplastic geomaterials. The hydro‐mechanical coupling is formulated by means of the thermodynamic framework for partially saturated media, extended by taking into account isotropic damage and plasticity. State and complementary laws are governed by the so‐called plastic effective stress and equivalent pore pressure. Assuming a bimodal pore size distribution for cracked porous media, the hydraulic part (water retention curve and hydraulic conductivity) is modelled using phenomenological functions of damage variable. The participation of damage on both mechanical and hydraulic part enables this model to describe bilateral couplings between them. This coupled model is then validated against a number of experimental data obtained from Callovo‐Oxfordian argillite, which is the possible host rock for a radioactive waste disposal in France. Parametric studies are also carried out to check the consistency and to better demonstrate the bilateral couplings in the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto‐viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro‐mechanical models based on multi‐scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro‐mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non‐linear character of their behaviour. It is shown that both phenomenological and micro‐mechanical models exhibit an incremental non‐linearity. In addition, the multi‐scale approach reveals that the macroscopic incremental non‐linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The subloading concept is an extension of mathematical plasticity which defines an internal surface to the conventional yield surface. It is indeed a versatile approach, especially for the modelling of soils under quasi-static cycles with smooth transitions from pure elastic to elastoplastic behaviour. For the case of isotropic hardening models, this paper demonstrates that the subloading isotropic plasticity is equivalent to a variable modulus approach and therefore a simpler and equivalent methodology can be adopted instead. In addition to demonstrating this equivalence, an alternative formulation that was presented elsewhere and that uses only one surface is briefly discussed. The alternative formulation can then be easily applied to popular models for soils such as the Cam clay model. Finally, some numerical predictions are presented in order to illustrate the capabilities of the subloading isotropic plasticity and the corresponding variable modulus approach.  相似文献   

9.
Y. Jia  H.B. Bian  G. Duveau  K. Su  J.F. Shao   《Engineering Geology》2009,109(3-4):262-272
To enhance the understanding of thermal impact on the in situ behaviour of the Callovo–Oxfordian argillite, this paper presents an interpretation of an in situ heating experiment carried out in the Meuse/Haute Marne Underground Research Laboratory (M/HM URL). The argillite was heated successively by two constant heating powers: 277 W and 925 W. When subjected to thermal loading, the argillite exhibits an important volume change and a strong pore pressure response that significantly affect its hydraulic and mechanical behaviour. Numerical analysis has been performed by using a coupled theoretical formulation that incorporates a constitutive model especially developed for this material. Based on Biot's theory, this model includes the influence of interstitial pressure on the mechanical behaviour. The simulation obtained reproduces satisfactorily the results of the in situ experiment and the main observed patterns of behaviour. The interpretation and discussion of numerical results provide additional data that can help us to understand the thermo-hydromechanical behaviour concepts of saturated argillite formation.  相似文献   

10.
《Computers and Geotechnics》2006,33(6-7):316-329
The aim of the paper is to provide new elements concerning the constitutive behavior of sedimentary rocks and the numerical aspects for basin simulators. A comprehensive model for mechanical compaction of sedimentary basins is developed within finite poroplasticity setting. Particular concern is paid to the effects of large porosity changes on the poromechanical properties of the sediment material. A simplified micromechanics-based approach is used to account for the stiffness increase and hardening induced by large plastic strains.A key challenge for numerical assessment of sedimentary basin evolution is to integrate multiple coupled processes in the context of open material systems. To this end, a numerical approach inspired from the ‘deactivation/reactivation’ method used for the simulation of excavation process and lining placement in tunnel engineering, has been developed. Periods of sediments accretion are simulated by progressive activation of the gravity forces within a fictitious closed system. Fundamental components of the constitutive model developed before (hydromechanical coupling, dependence of poroelastic properties on large plasticity, impact of irreversible porosity changes on the hardening rule, evolution of permeability with porosity) are included into our finite element code.Illustrative examples of basin simulation are performed in the one-dimensional case. Various aspects of the constitutive model are investigated. Their influence on the corresponding basin response is analyzed in terms of compaction law, porosity and fluid pressure profiles.  相似文献   

11.
An algorithm is outlined for the implicit integration of isotropic plasticity models for an arbitrary choice of mixed stress and strain control variables. Drained as well as undrained behaviour is considered. The closest-point-projection method in conjunction with a completely strain-driven format is used in a core algorithm. In the drained case strain response variables are determined via iterations to satisfy equilibrium of prescribed and calculated stresses that correspond to the strain response variables. In the undrained case, on the other hand, strains and pore pressure are determined via simultaneous iterations to satisfy equilibrium and the incompressibility condition. The algorithm is applied to a new generalized cam-clay model, and various iteration techniques are assessed. In particular, Newton iterations which employ the matrix of algorithmic tangent stiffness moduli are shown to compete favourably with more conventional methods.  相似文献   

12.
BACCHUS2 in situ isothermal wetting experiment has been analysed by means of a coupled flow-deformation approach. Backfill material, a mixture of Boom clay powder and high density pellets, has been extensively tested in the laboratory in order to determine its hydraulic and mechanical properties. Parameters of constitutive equations were derived from this experimental data base. Two mechanical constitutive models have been used in the simulation of the ‘in situ’ experiment: a state surface approach and an elastoplastic model. Calculations have shown several features of the hydration process which help to understand the behaviour of expansive clay barriers. Predictions using both models have been compared with each other and with actual measurement records. This has allowed a discussion of the comparative mertis of both approaches and the identification of some critical parameters of backfill behaviour. Overall agreement between calculations and field measurements is encouraging and shows the potential of the methods developed to model the behaviour of engineered clay barriers in the context of nuclear waste disposal. © 1998 by John Wiley & Sons, Ltd.  相似文献   

13.
In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress–strain behaviour and the effects of deformation on the soil–water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress–strain behaviour is considered. However, until now, few models predict the stress–strain and soil–water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour.  相似文献   

14.
In order to understand the mechanical behaviours of the surrounding rocks in the underground caverns of the Wudongde hydropower plant, triaxial tests are performed on a type of dolomite. It is revealed that damage induced by crack development is the main factor controlling the nonlinear plastic deformation and failure behaviour of the dolomite in both pre- and post-peak regimes. Based on this understanding, a coupled elastoplastic damage model is developed for capturing the dolomite’s mechanical behaviours. In the model, the effects of plasticity and damage on rocks is described by introducing plastic hardening and damage softening commonly in the plastic yield surface. Which are both derived from a suitable Helmholtz free energy function. The model is used to simulate the triaxial tests. Comparisons between test results and the numerical modelling show that the developed model is capable of describing the macro mechanical behaviours of the Wudongde dolomite.  相似文献   

15.
Summary A number of earthquakes have been recorded in strata above underground potash mines in Saskatchewan, Canada. These seismic events are widely understood to be generated in the carbonate Dawson Bay Formation and, possibly, other superincumbent beds, and are believed to be directly related to mining operations. The mechanical response of these higher strata to mining is not observable andin situ instrumentation for measuring post-mining stresses and strains in the carbonate beds is sparse. Numerical models are believed to be the most effective option for investigating the response of these higher strata to potash mining. In this regard a realistic finite element model based on elasto-plastic material behaviour is developed in this paper. Special capabilities added to this general elasto-plastic model permit simulation of the post-failure behaviour of the rock mass. Possible modes of failure in the Dawson Bay are investigated and the brittle failure of intact limestone is affirmed as the possible mode of failure producing major seismicity. Slip along existing discontinuities in overlying strata is also demonstrated to be another possible mechanism, though with lower energy levels.  相似文献   

16.
This paper presents a mechanical analogue which models the response of a rigid circular footing on an ideal elastoplastic half-space to transient loads. In the rational analysis of pile-driving dynamics, the response of soil at the base of a pile is often approximated by a footing on a semi-infinite half-space. Most existing base models employ the well-known Lysmer analogue to model the elastic response of the soil at the pile base, and account for the inelastic soil behaviour through the inclusion of a plastic slider with a slip load equal to the ultimate failure load of the footing. The improved model provides a force response which is significantly closer to the ideal response than existing models. The paper commences with a review of analytical solutions for the dynamic response of a rigid circular footing on an elastic half-space. Existing mechanical analogs for the system are reviewed, and an automatic matching process proposed which improves the accuracy of the analogs under transient loading. The inelastic response is then studied using the finite element method, and the mechanical analogs are modified to allow representation of the observed inelastic behaviour. Examples are presented illustrating close agreement between the proposed models and finite element analyses for a range of Poisson's ratio. The improved models have direct application for one-dimensional models of pile driving, particularly in the back-analysis of data from dynamic testing of piles. They are also applicable to studies of dynamic compaction.  相似文献   

17.
Constitutive laws for rock joints should be able to reproduce the fundamental mechanical behaviour of real joints, such as dilation under shear and strain softening due to surface asperity degradation. In this work, we extend the model of Plesha to include hydraulic behaviour. During shearing, the joint can experience dilation, leading to an initial increase in its permeability. Experiments have shown that the rate of increase of the permeability slows down as shearing proceeds, and, at later stages, the permeability could decrease again. The above behaviour is attributed to gouge production. The stress–strain relationship of the joint is formulated by appeal to classical theories of interface plasticity. It is shown that the parameters of the model can be estimated from the Barton–Bandis empirical coefficients; the Joint Roughness Coefficient (JRC) and the Joint Compresive strength (JSC). We further assume that gouge production is also related to the plastic work of the shear stresses, which enables the derivation of a relationship between the permeability of the joint and its mechanical aperture. The model is implemented in a finite element code (FRACON) developed by the authors for the simulation of the coupled thermal–hydraulic–mechanical behaviour of jointed rock masses. Typical laboratory experiments are simulated with the FRACON code in order to illustrate the trends predicted in the proposed model. © 1998 by John Wiley & Sons. Ltd.  相似文献   

18.
Li  Zhenze  Su  Grant  Zheng  Quinn  Nguyen  Thanh Son 《Acta Geotechnica》2020,15(3):635-653

Significant chemical influence on the swelling potential of MX-80 bentonite was observed during swelling tests where specimens were hydrated with highly concentrated brine. The maximum swelling pressure for specimens hydrated with brine was about 30% of the maximum swelling pressure for the same specimens hydrated with de-ionized water. The maximum swelling pressure was attained within tens of hours of brine infiltration and further decreased by half within a year. A fully coupled hydro–mechanical–chemical (HMC) dual-porosity model is proposed in this paper to interpret the swelling behaviour of MX-80 when infiltrated with brine. The dependence of hydraulic and mechanical properties on such factors as porosity, salinity and water content was investigated. A nonlinear elastic constitutive model was proposed to correlate the swelling pressure with the variation in the microporosity. The chemical effects on the mechanical behaviour were coupled at the micropore level. A number of relationships have been developed for MX-80, i.e. micropore permeability as a function of void ratio, water retention characteristics of micropores and macropores, micropore dependence on water content and the diffusion coefficients of the two types of pore structure. The proposed model was successful in reproducing both quantitatively and qualitatively the experimental results from two sets of infiltration experiments on compacted MX-80 bentonite.

  相似文献   

19.
Summary A finite element formulation is proposed for finite deformation dynamic analysis of saturated soil systems. The formulation is based on an updated Lagrangian approach and specifically considers the finite deformation effects on the flow of water through a soil element which undergoes a large deformation or rotation. A two-surface plasticity model is used to model the stress-strain behaviour of the soil skeleton. The proposed formulation has been implemented and is applied to simulate the response of a centrifuge model embankment. The calculated response is in good agreement with the observed behaviour of the soil embankment in the centrifuge test.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号