首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
It has been known for many years that dispersivities increase with solute displacement distance in a subsurface. The increase of dispersivities with solute travel distance results from significant variation in hydraulic properties of porous media and was identified in the literature as scale‐dependent dispersion. In this study, Laplace‐transformed analytical solutions to advection‐dispersion equations in cylindrical coordinates are derived for interpreting a divergent flow tracer test with a constant dispersivity and with a linear scale‐dependent dispersivity. Breakthrough curves obtained using the scale‐dependent dispersivity model are compared to breakthrough curves obtained from the constant dispersivity model to illustrate the salient features of scale‐dependent dispersion in a divergent flow tracer test. The analytical results reveal that the breakthrough curves at the specific location for the constant dispersivity model can produce the same shape as those from the scale‐dependent dispersivity model. This correspondence in curve shape between these two models occurs when the local dispersivity at an observation well in the scale‐dependent dispersivity model is 1·3 times greater than the constant dispersivity in the constant dispersivity model. To confirm this finding, a set of previously reported data is interpreted using both the scale‐dependent dispersivity model and the constant dispersivity model to distinguish the differences in scale dependence of estimated dispersivity from these two models. The analytical result reveals that previously reported dispersivity/distance ratios from the constant dispersivity model should be revised by multiplying these values by a factor of 1·3 for the scale‐dependent dispersion model if the dispersion process is more accurately characterized by scale‐dependent dispersion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
L. Foglia  S.W. Mehl 《Ground water》2015,53(1):130-139
In this work, we provide suggestions for designing experiments where calibration of many models is required and guidance for identifying problematic calibrations. Calibration of many conceptual models which have different representations of the physical processes in the system, as is done in cross‐validation studies or multi‐model analysis, often uses computationally frugal inversion techniques to achieve tractable execution times. However, because these frugal methods are usually local methods, and the inverse problem is almost always nonlinear, there is no guarantee that the optimal solution will be found. Furthermore, evaluation of each inverse model's performance to identify poor calibrations can be tedious. Results of this study show that if poorly calibrated models are included in the analysis, simulated predictions and measures of prediction uncertainty can be affected in unexpected ways. Guidelines are provided to help identify problematic regressions and correct them.  相似文献   

3.
The simulation of long time series of rainfall rates at short time steps remains an important issue for various applications in hydrology. Among the various types of simulation models, random multiplicative cascade models (RMC models) appear as an appealing solution which displays the advantages to be parameter parsimonious and linked to the multifractal theory. This paper deals with the calibration and validation of RMC models. More precisely, it discusses the limits of the scaling exponent function method often used to calibrate RMC models, and presents an hydrological validation of calibrated RMC models. A 8-year time series of 1-min rainfall rates is used for the calibration and the validation of the tested models. The paper is organized in three parts. In the first part, the scaling invariance properties of the studied rainfall series is shown using various methods (q-moments, PDMS, autocovariance structure) and a RMC model is calibrated on the basis of the rainfall data scaling exponent function. A detailed analysis of the obtained results reveals that the shape of the scaling exponent function, and hence the values of the calibrated parameters of the RMC model, are highly sensitive to sampling fluctuation and may also be biased. In the second part, the origin of the sensivity to sampling fluctuation and of the bias is studied in detail and a modified Jackknife estimator is tested to reduce the bias. Finally, two hydrological applications are proposed to validate two candidate RMC models: a canonical model based on a log-Poisson random generator, and a basic micro-canonical model based on a uniform random generator. It is tested in this third part if the models reproduce faithfully the statistical distribution of rainfall characteristics on which they have not been calibrated. The results obtained for two validation tests are relatively satisfactory but also show that the temporal structure of the measured rainfall time series at small time steps is not well reproduced by the two selected simple random cascade models.  相似文献   

4.
ABSTRACT

Calibration of hydrological models is challenging in high-latitude regions where hydrometric data are minimal. Process-based models are needed to predict future changes in water supply, yet often with high amounts of uncertainty, in part, from poor calibrations. We demonstrate the utility of stable isotopes (18O, 2H) as data employed for improving the amount and type of information available for model calibration using the isoWATFLOODTM model. We show that additional information added to calibration does not hurt model performance and can improve simulation of water volume. Isotope-enabled calibration improves long-term validation over traditional flow-only calibrated models and offers additional feedback on internal flowpaths and hydrological storages that can be useful for informing internal water distribution and model parameterization. The inclusion of isotope data in model calibration reduces the number of realistic parameter combinations, resulting in more constrained model parameter ranges and improved long-term simulation of large-scale water balance.  相似文献   

5.
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test.
Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT.
Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.  相似文献   

6.
In a special opportunity, detailed measurements of the flow in an overbank flow in the Flood Channel Facility at HR Wallingford were used in conjunction with tracer test data to assess the effectiveness of dispersion models based around random particle tracking (RPT). Ten different RPT models based on different assumptions and levels of information about the nature of the Lagrangian velocity field were investigated. Multiple simulations were used to calibrate variable parameters controlling the average magnitude of the perturbations for each model by comparison with observed concentrations at one cross-section. The calibrated models were then used to predict concentration distributions further downstream. Several of the calibrated models showed close agreement between observed and predicted concentration distributions. The most complex models using the most information about the velocity distributions were no better (and in some cases worse) in prediction than the simplest models investigated. It would appear that our knowledge of the system, despite the quality of the experiments, is too uncertain to infer a precise model structure.  相似文献   

7.
In a special opportunity, detailed measurements of the flow in an overbank flow in the Flood Channel Facility at HR Wallingford were used in conjunction with tracer test data to assess the effectiveness of dispersion models based around random particle tracking (RPT). Ten different RPT models based on different assumptions and levels of information about the nature of the Lagrangian velocity field were investigated. Multiple simulations were used to calibrate variable parameters controlling the average magnitude of the perturbations for each model by comparison with observed concentrations at one cross-section. The calibrated models were then used to predict concentration distributions further downstream. Several of the calibrated models showed close agreement between observed and predicted concentration distributions. The most complex models using the most information about the velocity distributions were no better (and in some cases worse) in prediction than the simplest models investigated. It would appear that our knowledge of the system, despite the quality of the experiments, is too uncertain to infer a precise model structure.  相似文献   

8.
An empirical hyperbolic scale-dependent dispersion model, which predicts a linear growth of dispersivity close to the origin and the attainment of an asymptotic dispersivity at large distances, is presented for deterministic modelling of field-scale solute transport and the analysis of solute transport experiments. A simple relationship is derived between local dispersivity, which is used in numerical simulations of solute transport, and effective dispersivity, which is estimated from the analysis of tracer breakthrough curves. The scale-dependent dispersion model is used to interpret a field tracer experiment by nonlinear least-squares inversion of a numerical solution for unsaturated transport. Simultaneous inversion of concentration-time data from several sampling locations indicates a linear growth of the dispersion process over the scale of the experiment. These findings are consistent with the results of an earlier analysis based on the use of a constant dispersion coefficient model at each of the sampling depths.  相似文献   

9.
With increasing demands on limited water resources, regulation of larger river systems continues to increase and so too does the need for accurate water accounting and prediction in these systems. River system models are either calibrated manually or automatically on a reach‐by‐reach basis, i.e. each reach is calibrated as a separate entity with little or no consideration of fluxes at other locations within the river system. While this is a practical approach, simulation errors can propagate downstream to make calibration or prediction difficult at those locations. Likewise parameters may suffer from over‐fitting especially where observations are erroneous. We developed and implemented a system calibration strategy in a portion of the Murrumbidgee River, Australia, where parameters for 11 gauges (36 parameters) were calibrated together. Parameter values, model states and model goodness of fit were compared to reach‐by‐reach calibration. The system calibration produced a better goodness of fit across the whole system relative to reach‐by‐reach calibration. Additionally, model system states were more realistic than reach‐by‐reach optimized models. Over‐fitting was obvious using the reach‐by‐reach method for one reach/gauge in particular. This was avoided with system calibration method, with improved goodness of fit at all gauges downstream of the problem gauge. The results here suggest that the system calibration approach provides more hydrologically consistent states, improved overall fit and avoids over‐fitting at problem gauges. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A field tracer test was carried out in a light nonaqueous phase liquid (LNAPL) source zone using a well pattern consisting of one injection well surrounded by four extraction wells (5‐spot well pattern). Multilevel sampling was carried out in two observation wells located inside the test cell characterized by heterogeneous lithology. Tracer breakthrough curves showed relatively uniform flow within soil layers. A numerical flow and solute transport model was calibrated on hydraulic heads and tracer breakthrough curves. The model was used to estimate an average accessible porosity of 0.115 for the swept zone and an average longitudinal dispersivity of 0.55 m. The model was further used to optimize the relative effects of viscous forces versus capillary forces under realistic imposed hydraulic gradients and to establish optimal surfactant solution properties. Maximum capillary number (NCa) values between injection and extraction wells were obtained for an injection flow rate of 16 L/min, a total extraction flow rate of 20 L/min, and a surfactant solution with a viscosity of 0.005 Pa?s. The unconfined nature of the aquifer limited further flow rate or viscosity increases that would have led to unrealistic hydraulic gradients. An NCa range of 3.8 × 10?4 to 7.6 × 10?3 was obtained depending on the magnitude of the simulated LNAPL‐water interfacial tension reduction. Finally, surfactant and chase water slug sizing was optimized with a radial form of the simplified Ogata‐Banks analytical solution (Ogata and Banks 1961) so that injected concentrations could be maintained in the entire 5‐spot cell.  相似文献   

11.
It is well-known that the phase center of a Global Navigation Satellite System (GNSS) antenna is not a stable point coinciding with a mechanical reference. The phase center position depends on the direction of the received signal, and is antenna-and signaldependent. Phase center corrections (PCC) models of GNSS antennas have been available for several years. The first method to create antenna PCC models was the relative field calibration procedure. Currently only absolute calibration models are generally recommended for use. In this study we investigate the differences between position estimates obtained using individual and type-mean absolute antenna calibrations in order to better understand how receiver antenna calibration models contribute to the Global Positioning System (GPS) positioning error budget. The station positions were estimated with two absolute calibration models: the igs08.atx model, which contains typemean calibration results, and individual antenna calibration models. Continuous GPS observations from selected Polish European Permanent Network (EPN) stations were used for these studies. The position time series were derived from the precise point positioning (PPP) technique using the NAPEOS scientific GNSS software package. The results show that the differences in the calibrations models propagate directly into the position domain, affecting daily as well sub-daily results. In daily solutions, the position offsets, resulting from the use of individual calibrations instead of type-mean igs08.atx calibrations, can reach up to 5 mm in the Up component, while in the horizontal one they generally stay below 1 mm. It was found that increasing the frequency of sub-daily coordinate solutions amplifies the effects of type-mean vs individual PCC-dependent differences, and also gives visible periodic variations in time series of GPS position differences.  相似文献   

12.
Many of the continuous watershed models perform all their computations on a daily time step, yet they are often calibrated at an annual or monthly time-scale that may not guarantee good simulation performance on a daily time step. The major objective of this paper is to evaluate the impact of the calibration time-scale on model predictive ability. This study considered the Soil and Water Assessment Tool for the analyses, and it has been calibrated at two time-scales, viz. monthly and daily for the War Eagle Creek watershed in the USA. The results demonstrate that the model's performance at the smaller time-scale (such as daily) cannot be ensured by calibrating them at a larger time-scale (such as monthly). It is observed that, even though the calibrated model possesses satisfactory ‘goodness of fit’ statistics, the simulation residuals failed to confirm the assumption of their homoscedasticity and independence. The results imply that evaluation of models should be conducted considering their behavior in various aspects of simulation, such as predictive uncertainty, hydrograph characteristics, ability to preserve statistical properties of the historic flow series, etc. The study enlightens the scope for improving/developing effective autocalibration procedures at the daily time step for watershed models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this work the ensemble Kalman filter (EnKF) is applied to investigate the flow and transport processes at the macro-dispersion experiment (MADE) site in Columbus, MS. The EnKF is a sequential data assimilation approach that adjusts the unknown model parameter values based on the observed data with time. The classic advection–dispersion (AD) and the dual-domain mass transfer (DDMT) models are employed to analyze the tritium plume during the second MADE tracer experiment. The hydraulic conductivity (K), longitudinal dispersivity in the AD model, and mass transfer rate coefficient and mobile porosity ratio in the DDMT model, are estimated in this investigation. Because of its sequential feature, the EnKF allows for the temporal scaling of transport parameters during the tritium concentration analysis. Inverse simulation results indicate that for the AD model to reproduce the extensive spatial spreading of the tritium observed in the field, the K in the downgradient area needs to be increased significantly. The estimated K in the AD model becomes an order of magnitude higher than the in situ flowmeter measurements over a large portion of media. On the other hand, the DDMT model gives an estimation of K that is much more comparable with the flowmeter values. In addition, the simulated concentrations by the DDMT model show a better agreement with the observed values. The root mean square (RMS) between the observed and simulated tritium plumes is 0.77 for the AD model and 0.45 for the DDMT model at 328 days. Unlike the AD model, which gives inconsistent K estimates at different times, the DDMT model is able to invert the K values that consistently reproduce the observed tritium concentrations through all times.  相似文献   

14.
15.
Abstract

As watershed models become increasingly sophisticated and useful, there is a need to extend their applicability to locations where they cannot be calibrated or validated. A new methodology for the regionalization of a watershed model is introduced and evaluated. The approach involves calibration of a watershed model to many sites in a region, concurrently. Previous research that has sought to relate the parameters of monthly water balance models to physical drainage basin characteristics in a region has met with limited success. Previous studies have taken the two-step approach: (a) estimation of watershed model parameters at each site, followed by (b) attempts to relate model parameters to drainage basin characteristics. Instead of treating these two steps as independent, both steps are implemented concurrently. All watershed models in a region are calibrated simultaneously, with the dual objective of reproducing the behaviour of observed monthly streamflows and, additionally, to obtain good relationships between watershed model parameters and basin characteristics. The approach is evaluated using 33 basins in the southeastern region of the United States by comparing simulations using the regional models for three catchments which were not used to develop the regional regression equations. Although the regional calibration approach led to nearly perfect regional relationships between watershed model parameters and basin characteristics, these “improved” regional relationships did not result in improvements in the ability to model streamflow at ungauged sites. This experiment reveals that improvements in regional relationships between watershed model parameters and basin characteristics will not necessarily lead to improvements in the ability to calibrate a watershed model at an ungauged site.  相似文献   

16.
An efficient calibration with remotely sensed (RS) data is important for accurate predictions at ungauged catchments. This study investigates the advantages of streamflow-sensitive regionalization on calibration with RS evapotranspiration (ET). Regionalization experiments are performed at 28 catchments in Australia. The catchments are classified into three groups based on annual rainfall and runoff coefficients. Streamflow, RS ET, and a multi-objective RS ET-streamflow calibration are performed using the DiffeRential Evolution Adaptive Metropolis algorithm in each catchment. Simplified Australian Water Resource Assessment-Landscape model is calibrated for a selection of five parameters. Posterior probability distributions of parameters from three calibrations performed at donor catchments in each group are inspected to find the parameter for regionalization in the individual group. In group 1 of wetter catchments, regionalization of parameter FsoilEmax (soil evaporation scaling factor) helps to simplify the calibration without any deterioration in ET, soil moisture (SM) and streamflow predictions. Regionalization of parameter Beta (coefficient describing rate of hydraulic conductivity increase with water content) in group 2 assists to improve the streamflow predictions with no decrement in ET and SM predictions. However, regionalization is not able to provide satisfactory results in group 3. Group 3 includes low-yielding catchments, with average annual rainfall below 1000 mm/year and runoff coefficient less than 0.1, where traditional streamflow calibration also fails to produce accurate results. This study concludes that streamflow-sensitive regionalization is effective for improving the efficacy of RS ET calibration in wetter catchments.  相似文献   

17.
18.
Models of the production of cosmogenic nuclides typically incorporate an adjustable production rate parameter that is scaled for variations in production with latitude and altitude. In practice, this production rate parameter is set by calibration of the model using cosmogenic nuclide data from sites with independent age constraints. In this paper, we describe a calibration procedure developed during the Cosmic-Ray Produced Nuclide Systematics on Earth (CRONUS-Earth) project and its application to an extensive data set that included both new CRONUS-Earth samples and samples from previously published studies. We considered seven frameworks for elevation and latitude scaling and five commonly used cosmogenic nuclides, 3He, 10Be, 14C, 26Al, and 36Cl. In general, the results show that the calibrated production rates fail statistical tests of goodness-of-fit. One conclusion from the calibration results is that two newly developed scaling frameworks and the widely used Lal scaling framework provide qualitatively similar fits to the data, while neutron-monitor based scaling frameworks have much poorer fit to the data. To further test the fitted models, we computed site ages for a number of secondary sites not included in the primary calibration data set. The root-mean-square percent differences between the median computed ages for these secondary sites and independent ages range from 7.1% to 27.1%, differences that are much larger than the typical uncertainties in the site ages. The results indicate that there are substantial unresolved difficulties in modeling cosmogenic nuclide production and the calibration of production rates.  相似文献   

19.
ABSTRACT

A monthly conceptual rainfall—runoff model that enjoys fairly widespread use in South Africa was calibrated for each of 50 calibration samples of lengths 3–20 years, drawn from a synthetic 101-year semiarid streamflow time series generated with the Stanford Watershed Model. The ability of Pitman's model to reconstruct the original 101 years of monthly streamflow for each of the 50 calibrations was then examined against a set of statistics of monthly and annual streamflows. The variabilities of key model parameters associated with different lengths of calibration period were also investigated. The results show that it is well worthwhile to increase the calibration period to about 15 years in order to reduce errors in reconstructed flow statistics. Merely increasing the length of calibration period from 6 to 10 years may decrease the error in most regenerated flow statistics by 30–50%. A fair amount of variability in “optimum” parameters, however, seems unavoidable, even at longer calibration periods, though this may also partly be due to imperfect model calibration. The effects of this variability are greatly attenuated in the reconstructed flow statistics due to parameter interdependence.  相似文献   

20.
From models to performance assessment: the conceptualization problem   总被引:5,自引:0,他引:5  
Bredehoeft JD 《Ground water》2003,41(5):571-577
Today, models are ubiquitous tools for ground water analyses. The intent of this paper is to explore philosophically the role of the conceptual model in analysis. Selection of the appropriate conceptual model is an a priori decision by the analyst. Calibration is an integral part of the modeling process. Unfortunately a wrong or incomplete conceptual model can often be adequately calibrated; good calibration of a model does not ensure a correct conceptual model. Petroleum engineers have another term for calibration; they refer to it as history matching. A caveat to the idea of history matching is that we can make a prediction with some confidence equal to the period of the history match. In other words, if we have matched a 10-year history, we can predict for 10 years with reasonable confidence; beyond 10 years the confidence in the prediction diminishes rapidly. The same rule of thumb applies to ground water model analyses. Nuclear waste disposal poses a difficult problem because the time horizon, 1000 years or longer, is well beyond the possibility of the history match (or period of calibration) in the traditional analysis. Nonetheless, numerical models appear to be the tool of choice for analyzing the safety of waste facilities. Models have a well-recognized inherent uncertainty. Performance assessment, the technique for assessing the safety of nuclear waste facilities, involves an ensemble of cascading models. Performance assessment with its ensemble of models multiplies the inherent uncertainty of the single model. The closer we can approach the idea of a long history with which to match the models, even models of nuclear waste facilities, the more confidence we will have in the analysis (and the models, including performance assessment). This thesis argues for prolonged periods of observation (perhaps as long as 300 to 1000 years) before a nuclear waste facility is finally closed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号