首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Freshwater lakes in Antarctica fluctuate from ice-free state (during austral summer) to ice-cover state (during austral winter). Hence the lakes respond instantly to the seasonal climate of the region. The Antarctic seasons respond sharply to the glacial and interglacial climates and these signatures are archived in the lake sediments. A sediment core from Sandy Lake, a periglacial lake located in Schirmacher Oasis of East Antarctica records distinct changes in grain-size, C, N, C/N ratios (atomic), δ13COM and δ15NOM contents during the last 36 ky. The contents of the sedimentary organic matter (OM) proxies (Corg ~ 0.3 ± 0.2%, C/N ratios ~9 ± 5 and δ13COM ~?18 ± 6‰) indicate that the OM in this lake sediment is a product of mixing of terrestrial and lacustrine biomass. Distinctly lower contents of Corg (~0.2%) and sand (~50%), low C/N ratios (~8) and depleted δ13COM (~?20‰) during the Last Glacial Maximum (LGM: 32–17 ky BP based on Vostok Temperatures) suggest greater internal (autochthonous) provenance of organic matter and limited terrestrial (allochthonous) inputs probably due to long and intense winters in the Antarctic. Such intense winters might have resulted the lake surface to be ice-covered for most part of the year when the temperatures remained consistently colder than the Holocene temperatures. The denitrification within the lake evident by enriched δ15NOM (>10‰) during Antarctic LGM might have resulted from oxygen-limitation within the lake environment caused by insulated lake surface. The gradual increases in δ13COM, C/N and sand content starting at ~11 ky BP and attaining high values (~?11‰, ~10 and ~80% respectively) at ~6 ky BP together suggest a subtle change in the balance of sources of organic matter between algal and macrophyte/bryophyte nearly 8–9 ky later to the beginning of the deglaciation. Thus the seasonal opening-up of the Sandy Lake similar to the modern pattern started with the establishment of the optimum temperature conditions (i.e., 0 °C anomaly) in the Antarctic, prior to which the lake environment might have remained mostly insulated or closed.  相似文献   

2.
Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between ?34.7 and ?30.5 ‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2–3 ‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (?30.4 to ?28.2 ‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.  相似文献   

3.
Total organic carbon (TOC), total nitrogen (TN), stable carbon and nitrogen isotopes (δ13C, δ15N), total phosphorus (TP) and organic phosphorus (OP) were measured in surface sediments and two short cores (DU-3 and WS-4) from Lake Nansihu, China to infer historical changes in anthropogenic nutrient inputs and corresponding shifts in lake primary productivity. Results indicate that organic matter preserved in the sediments is mainly autochthonous and that analyzed sediment variables were affected little by post-burial diagenesis. Increasing TOC, TN, OP and TP concentrations since the 1940s reflect increased P loading and elevated lake productivity. The δ13C values varied from ?21.5 to ?26.6‰ in the two sediment cores. Values were relatively more negative before the 1940s, but thereafter increased until the mid-1980s, reflecting elevated lake productivity. Since the mid-1980s, δ13C values remained relatively constant in core WS-4 and decreased in core DU-3, perhaps reflecting a change in the phytoplankton community. The δ15N values ranged from ?0.5 to 1.3‰ in core DU-3 and from 1.2 to 2.5‰ in core WS-4 before the mid-1980s, and increased to between 2.1 and 8.0‰ and 5.2 and 7.8‰, respectively, thereafter. Topmost sediments in the two cores display δ15N values similar to those recorded in the surface sediments (5.5–7.5‰). Higher δ15N values in recent deposits correspond to greater nitrogen concentration in water, and likely indicate anthropogenic nitrogen input, mainly from human and animal wastes.  相似文献   

4.
We inferred past climate conditions from the δ13C and δ15N of organic matter (OM) in a sediment core (DP-2011-02) from the sub-alpine Daping Swamp, in the western Nanling Mountains, South China. In the study region, a 1000-m increase in altitude results in a ~0.75‰ decrease in δ13C and a ~2.2‰ increase in δ15N. Organic carbon stable isotope (δ13C) values of the dominant modern vegetation species, surface soils, and the core samples taken in the swamp exhibit a strong terrestrial C3 plant signature. Comprehensive analysis of the core indicates both terrestrial and aquatic sources contribute to the OM in sediment. Temperature and precipitation are most likely the critical factors that influence δ13C: warm and wet conditions favor lower δ13C, whereas a dry and cool climate leads to higher δ13C values. Higher δ15N values may result from greater water depth and increased primary productivity, promoted by large inputs of dissolved inorganic nitrogen, induced by high surface runoff. Lower δ15N values are associated with lower lake stage and reduced productivity, under drier conditions. Therefore, stratigraphic shifts in these stable isotopes were used to infer past regional climate. Measures of δ13C and δ15N in deglacial deposits, in combination with total organic carbon (TOC) and nitrogen (TN) concentrations, the TOC/TN ratio, coarse silt and sand fractions, dry bulk density and low-frequency mass magnetic susceptibility, reveal two dry and cold events at 15,400–14,500 and 13,000–11,000 cal a BP, which correspond to Heinrich event 1 and the Younger Dryas, respectively. A pronounced warm and wet period that occurred between those dry episodes, from 14,500 to 13,000 cal a BP, corresponds to the Bølling–Allerød. The δ13C and δ15N data, however, do not reflect a warm and wet early Holocene. The Holocene optimum occurred between ~8000 and 6000 cal a BP, which is different from inferences from the nearby Dongge cave stalagmite δ18O record, but consistent with our previous results. This study contributes to our understanding of climate-related influences on δ13C and δ15N in OM of lake sediments in South China.  相似文献   

5.
We conducted a rearing experiment with the chironomid species Chironomus riparius to assess the relationship between the δ13C values of chironomid larvae and the δ13C values of their exuvial head capsules. Our experiment was also designed to study the extent of the trophic fractionation factor (Δ13C) under different dietary conditions. Three food sources were used (Tetramin, oats and corn), covering a range in δ13C values of 14.55 ‰. For each of the four successive instars, carbon isotope ratios were measured in larval tissues and head capsules. This approach highlighted the variability in δ13C for both larvae and their head capsules during larval development. Once the larvae reached the 3rd instar, their δ13C values were stabilised and did not significantly differ from their food δ13C (Δ13C = 0 ‰). It is probable that the variability in the δ13C offset during larval development reflected a difference in the carbon turnover for the chironomid cuticle compared with the whole body. At the 4th instar, the δ13C offset did not significantly differ between the three food sources and was ?0.9 ± 0.2 ‰. The proposed Δ13C and δ13C offset values can be considered as a first step for the reconstructions of the chironomid larvae paleo-diets with the aim of deciphering the different organic carbon sources supporting chironomid larvae productions. However, the influence of the environment (e.g. temperature, oxygen), other food sources (e.g. different nutritive values) as well as taxonomy (i.e. other chironomid species) should be assessed to strengthen the robustness of these results.  相似文献   

6.
We investigated a 3.75-m-long lacustrine sediment record from Lake Äntu Sinijärv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (δ18O) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution δ18O data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Äntu Sinijärv sediments by abrupt appearance of diagnostic pollen (Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of δ18O (less than ?12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in δ18O values, to ?11.3 and ?11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from ?11.5 to ?10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in δ18O (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in δ18O, reaching the most negative value (?12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP.  相似文献   

7.
We report δ18O and δ13C values of 21 fossil shells from the aquatic gastropod Radix from a sediment core taken in the eastern basin of Lake Karakul, Tajikistan (38.86–39.16°N, 73.26–73.56°E, 3,928 m above sea level) and covering the last 4,200 cal yr BP. The lake is surrounded by many palaeoshorelines evidencing former lake-level changes, most likely triggered by changes in meltwater flux. This hypothesis was tested by interpreting the isotope ratios of Radix shells together with δ18O values of Ostracoda and of authigenic aragonite. The mean δ18O values of Radix and Ostracoda fall along the same long-term trend indicating a change in the isotopic composition of precipitation, which contributed to the glaciers in the catchment as snow and finally as melt water to the lake. The sclerochronological δ18O and δ13C patterns in Radix shells provide seasonal weather information, which is discussed in context with previously proposed climatic changes during the last 4,200 cal yr BP. The period between ~4,200 and 3,000 cal yr BP was characterized by stepwise glacier advance in the catchment most likely due to a precipitation surplus. Subsequently the climate remained relatively cold but the lake level fluctuated, as indicated by ostracod shell isotope data. From ~1,800 cal yr BP the sclerochronological patterns provide evidence for increasing melt water flux and transport of allochthonous carbon into the lake, most likely due to an accelerated glacier retreat. The period around 1,500 cal yr BP was characterized by strong warming, increasing meltwater flux, glacier retreat and an increasing lake level. Warm conditions continued until ~500 cal yr ΒP probably representing the end of the Medieval Warm Period. A short relatively cold (dry?) period and a lower lake level are assumed for ~350 cal yr BP, possibly an analogue to the Maunder Minimum cooling in the North Atlantic region. Our results show that the lake system is complex, and that changes were triggered by external forcing and feedbacks. The similarity of δ18O values in Radix and ostracod shells demonstrates that both archives provide complementary information.  相似文献   

8.
The nitrogen stable isotopic signature (δ15N) of sediment is a powerful tool to understand eutrophication history, but its interpretation remains a challenge. In a large-scale comparative approach, we identified the most important drivers influencing surface sediments δ15N of 65 lakes from two regions of Canada using proxies that reflect watershed nitrogen (N) sources, internal lake microbial cycling and productivity. Across regions, we found that water column total nitrogen (TN),  %N in the sediments and lake morphometric variables were the best predictors of sedimentary δ15N, explaining 66 % of its variation. Significant relationships were also found between sediment δ15N and human-derived N load ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.23, p < 0.001), the latter being a strong predictor of TN ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.68, p < 0.001). Despite a relatively strong overall relationship, variation partitioning revealed an interesting difference in the dominant variable that influenced regional δ15N. Alberta lake sedimentary δ15N signature was dominated by human derived N load. In contrast, internal processing appeared to be more important in Quebec lakes, where sediment δ15N was best explained by  %N in the sediments and lake volume. Overall, our findings support the use of δ15N in paleolimnological investigations to reconstruct changing N sources to lakes but also highlight that regions may have distinctive drivers. Interpretations of sediment δ15N are likely to be strongest when multiple lines of evidence are employed and when placed in a regional context.  相似文献   

9.
We present a paleolimnological record from shallow Lake Wuliangsu in the Yellow River Basin, north China, using a short (56 cm) sediment core. Our objective was to investigate environmental changes in this semi-arid region over the past ~150 years. The sediment core was dated using 137Cs and 210Pb. We examined stratigraphic trends in core lithology, nutrients, stable isotopes (δ13C and δ15N) and trace element concentrations in the Lake Wuliangsu core to discern between natural sediments and those affected by human agency. A lithologic transition from yellow, coarse-grained sediment to grey, fined-grained sediment marked the lake’s formation about 1860. Until ~1950, sediments displayed relatively low and constant heavy metal concentrations, indicating little human influence. In the 1950s, enrichment factors (EFs) increased, reflecting greater impact of human activities. Carbon and nitrogen stable isotopes in organic matter (OM), along with heavy metal concentrations, were used to infer past shifts in trophic state and identify pollutants that came from agriculture, industry and urbanization. In the late 1950s, the first evidence for environmental change is recorded by increases in total organic carbon (TOC), total organic nitrogen (TN), TOC/TN, EFs, δ13C and a decrease in δ15N. After about year 2000, a more rapid increase in trophic status occurred, as indicated by greater total phosphorus (TP), EFs, δ15N and lower δ13C values. Changes in isotope and TOC/TN values in the lake sediments may reflect a shift in lake ecology during this period. The first increase in trophic status during the late 1950s was mainly a result of agricultural development in the catchment. In contrast, the change after ca. AD 2000 was driven largely by urban and industrial development. Agreement between paleolimnologic data from Lake Wuliangsu, and both instrumental and written records, indicates that the lake sediments provide a reliable archive for investigating the formation and environmental history of the lake.  相似文献   

10.
We investigated oxygen and carbon isotopes of bulk carbonate and of benthic freshwater ostracods (Candona candida) in a sediment core of Lago Piccolo di Avigliana that was previously analyzed for pollen and loss-on-ignition, in order to reconstruct environmental changes during the late glacial and early Holocene. The depth–age relationship of the sediment core was established using 14 AMS 14C dates and the Laacher See Tephra. While stable isotopes of bulk carbonates may have been affected by detrital input and, therefore, only indirectly reflect climatic changes, isotopes measured on ostracod shells provide unambiguous evidence for major environmental changes. Oxygen isotope ratios of ostracod shells (δ18OC) increased by ~6‰ at the onset of the Bølling (~14,650 cal BP) and were ~2‰ lower during the Younger Dryas (~12,850 to 11,650 cal BP), indicating a temporal pattern of climate changes similar to the North Atlantic region. However, in contrast to records in that region, δ18OC gradually decreased during the early Holocene, suggesting that compared to the Younger Dryas more humid conditions occurred and that the lake received gradually increasing input of 18O-depleted groundwater or river water.  相似文献   

11.
Isotopic records of aquatic cellulose are becoming increasingly important for palaeohydrological reconstructions, but widespread application of this climate proxy is hampered by minerogenic contamination that affects oxygen isotope measures in cellulose. Few records of isotopes in aquatic cellulose are available from palaeoclimate archives in the Southern Hemisphere. In this study, we used a new bulk cellulose extraction method and determined the oxygen (δ18O) and carbon (δ13C) isotope values in cellulose from a Holocene lake sediment core segment (7.2–1.1 cal ka BP) from Lake Pupuke, Auckland, New Zealand. Isotope values from modern, potential sources of sedimentary cellulose revealed the aquatic origin of the cellulose extracted from the core, and hence enabled inference of past lake water δ18O values from the δ18O of measured cellulose in the core. A shift to a more positive water balance in the lake was identified around 2.8 cal ka BP by a decrease in inferred lake water δ18O values. At that time, greater epilimnetic primary productivity is indicated by the higher δ13C values of sedimentary cellulose. Greater divergence between the δ13C values of cellulose and bulk organic matter suggests stronger stratification of the lake, likely caused by greater freshwater input. We discuss a possible link to a solar minimum that occurred at that time.  相似文献   

12.
The euryhaline ostracod Cyprideis torosa lives in Akyatan Lagoon, Turkey, which is exposed to large spatial and seasonal variations in water salinity, δ18O, and temperature. Hydrogen and oxygen isotope measurements of waters reveal that the large range of salinity (15–80 g L?1) in the lagoon results from a combination of evaporation and mixing between Mediterranean seawater and Seyhan River input. Round sieve-pore relative abundance in C. torosa provides a robust proxy for water salinity (S) from 15 to 80 g L?1, according to the equation: S = 161.41 (±4.52) * log10(% rounded pores) ? 94.04 (±3.44) (R2 = 0.937; p = 10?31). Seasonal sampling and isotope analysis of C. torosa in waters of known δ18O values (?4.7 to +6.9 ‰ V-PDB) and temperatures (15–35 °C) yielded a weak positive correlation (r = 0.71) between 1000 lnα(calcite–water) ‰ V-SMOW) and 103 * T?1. Specimens of C. torosa collected during the mild and warm seasons have oxygen isotope compositions close to those of inorganic calcite precipitated in equilibrium with ambient water. The large oxygen-isotope variability observed during any season of the year most likely results from shell calcification in water bodies of highly variable salinity, alkalinity, Mg/Ca and water saturation relative to calcite. Indeed, distinct water bodies in the Akyatan Lagoon are generated by mixing of fresh and marine waters, which are exposed to different evaporation rates at the seasonal scale.  相似文献   

13.
Several geological and geochemical parameters were determined in the sediments of the 5th (5 J) and 6th (6 J) Triglav Lakes, Julian Alps (NW Slovenia), in order to study the impact of natural catchment characteristics and anthropogenic activity. Fish were introduced into both lakes in 1991 and a mountain hut lies on the shore of 5 J. Sedimentary grain size (GS) was distinctly coarser in 5 J than 6 J, with arithmetic means ranging between 46 and 60 and 23–36 μm, respectively. In contrast, the mineralogical composition of the two sediments was similar. Calcite predominated strongly, comprising more than 77 % of total minerals, while dolomite and quartz were rare. Organic carbon (OC) and total nitrogen (TN) concentrations were highest in surficial sediments, with levels of 14.4 and 1.8 %, and 19.3 and 2.4 % observed in 5 J and 6 J, respectively. C/N ratios (atomic) were lowest in the same surface sediments, with the two lakes characterized by similar values (9.6 vs. 9.4, respectively), suggesting a predominance of autochthonous organic matter (OM) in both lakes. Contemporary δ13C values were lower in 5 J (?21.0 ‰) than 6 J (?18.5 ‰) sediments. Considerable changes in these four parameters were observed in recently deposited material, reflecting a shift in the trophic status of both lakes that was likely induced by the introduction of fish. In addition, the smaller and shallower 6 J seemed to respond to changes faster than the larger and deeper 5 J, indicating the higher sensitivity of the former. δ15N values in surface sediments of 5 J and 6 J were ?2.9 and ?4.4 ‰, respectively, with levels increasing gradually with depth to approximately +1.0 ‰ in deeper sediments. The observed changes could most likely be attributed to the atmospheric deposition of reactive nitrogen. The mountain hut has seemingly not had a significant enough impact on the lakes to be recorded in their sediments.  相似文献   

14.
The stable carbon isotope composition, expressed as δ13C values, of chitinous resting stages of planktivorous invertebrates can provide information on past changes in carbon cycling in lakes. For example, the δ13C values of cladoceran ephippia and bryozoan statoblasts have been used to estimate the past contribution of methane-derived carbon to lake food webs and variations in the δ13C value of planktonic algae. Limited information, however, is available concerning seasonal variations in δ13C values of these organisms and their resting stages. We measured the seasonal variation in δ13C values of Daphnia (Branchiopoda: Cladocera: Daphniidae) and their floating ephippia over a 2-year period in small, dimictic Lake Gerzensee, Switzerland. Floating ephippia of Ceriodaphnia (Branchiopoda: Cladocera: Daphniidae) and statoblasts of Plumatella (Phylactolaemata: Plumatellida: Plumatellidae) were analysed during parts of this period. Furthermore, δ13C values of remains from all three organism groups were analysed in a 62-cm-long sediment core. Throughout the year, Daphnia δ13C values tracked the δ13C values of particulate organic matter (POM), but were more negative than POM, indicating that Daphnia also utilize a relatively 13C-depleted carbon source. Daphnia ephippia δ13C values did not show any pronounced seasonal variation, suggesting that they are produced batch-wise in autumn and/or spring and float for several months. In contrast, δ13C values of Ceriodaphnia ephippia and Plumatella statoblasts followed variations in δ13CPOM values, Ceriodaphnia values being the most negative of the resting stages. Average cladoceran ephippia δ13C values in the flotsam agreed well with ephippia values from Gerzensee surface sediments. In contrast, average Plumatella statoblast δ13C values from the flotsam were 4‰ more negative than in the surface sediments. In the sediment core, δ13C values of the two cladocerans remained low (mean ?39.0 and ?41.9‰) throughout the record. In contrast, Plumatella had distinctly less negative δ13C values (mean ?32.0‰). Our results indicate that in Gerzensee, Daphnia and Ceriodaphnia strongly relied on a 13C-depleted food source throughout the past 150 years, most likely methane-oxidising bacteria, whereas this food source was not a major contribution to the diet of bryozoans.  相似文献   

15.
Due to methodological challenges there are only a few studies that focus on macrophyte dynamics in large lakes despite their notable role in a lake’s ecosystem functioning. This study investigates composition and productivity changes of the submerged vegetation of Lake Karakul, Pamir Mountains (Tajikistan), using sedimentary ancient DNA metabarcoding and elemental (C/N) and isotopic (δ13C, δ15N) measurements of Stuckenia cf. pamirica (Baagøe) Z. Kaplan (Potamogetonaceae) leaf remains. No Stuckenia cf. pamirica leaf remains were found for 28.7–26.1 cal ka BP, when both Potamogetonaceae and Chara (L.) DNA sequences were recorded, suggesting sparse submerged vegetation at the coring site. This agrees with the inference of a deep lake reached using geochemical proxies. From 26.1 to 17.5 cal ka BP a few macrophyte remains and high numbers of Potamogetonaceae sequences were recovered: lake level was probably low, as suggested by other studies on the lake. Another phase of increased numbers of Chara sequences and the absence of Stuckenia cf. pamirica leaf remains was found between 17.5 and 12.2 cal ka BP, which coincides with a lake-level transgression at Lake Karakul as indicated by paleo-shoreline investigations. Analyses of macrophyte remains reveal intermediate paleo-productivity from 6.9 cal ka BP and high paleo-productivity from 2.2 cal ka BP onwards. From comparisons with other studies, we suggest that lake-level changes are the main driver for the submerged vegetation composition and productivity at the coring site in Lake Karakul and underline our conclusions by depicting the present-day distribution of Stuckenia cf. pamirica and Chara within the lake.  相似文献   

16.
Elemental and isotopic compositions of organic matter in surficial sediments from five transects across Lagoa do Caçó (Brazil) were analyzed to identify the depth-related processes that affect the production and deposition of sedimentary organic matter in this shallow tropical lake. Each of four transverse transects began at a margin dominated by aquatic macrophytes (Eleocharis), crossed the central deep part of the lake, and terminated in the opposite, macrophyte-dominated margin. In each transect, TOC concentrations, C/N ratios, and δ13C values decreased between 0 and 4 m, whereas δ15N values increased. The variables remained stable in sediment from 4 m water depth to the center of the lake at 10 m. The depth-related patterns reflect differences in both the delivery and the deposition of organic matter in the lake. Organic matter is produced in abundance in the marginal area by emersed and submerged macrophyte vegetation that diminishes with depth and disappears at 4 meters. After the disappearance of macrophytes, organic matter is produced at low rates principally by open-lake phytoplankton. Drawdown of dissolved oxygen is high in the lake margins, but it is low in the oligotrophic open waters of the lake. Preservation of organic matter is consequently better in sediments of the lake margins than in deep waters. The depth-related pattern of organic matter delivery and deposition in the sediments of Lagoa do Caçó, in which water levels are sensitive to groundwater fluctuations, shows that the elemental and isotopic compositions of sediment organic matter can provide a record of changes in the paleohydrology of this and other similar shallow lake systems.  相似文献   

17.
A two-stage change in lake level during the 8.2-ka event was identified in Lake Sarup, Denmark (55°N), using a multiproxy approach on precise radiocarbon wiggle-matched annually laminated sediments deposited 8740–8060 cal. yr BP. Changes in δ13C and δ18O indicated closed lake hydrology driven by precipitation. The isotopic, sedimentary and plant macrofossil records suggested that the lake level started to decrease around 8400 cal. yr BP, the decrease accelerating during 8350–8260 before an abrupt increase during 8260–8210. This pattern shows that the climate anomaly started ~150 years before the onset of the 8.2-ka cooling event registered in Greenland ice cores, but was synchronous with hydrologic change in the North American Lake Agassiz drainage. The lake level decrease was accompanied by a higher accumulation rate of inorganic matter and lower accumulation rates of cladoceran subfossils and algal pigments, possibly due to increased turbidity and reduced nutrient input during this drier period. Pigment analysis also showed added importance of diatoms and cryptophytes during this climate anomaly, while cyanobacteria became more important when the water level rose. Moreover, Nymphaeaceae trichosclereids were abundant during the period of algal enrichment. Cladoceran taxa associated with floating leaved plants or benthic habitats responded in a complex way to changes in water level, but the cladoceran assemblages generally reflected deep lake conditions throughout the period. The lake did not return to its pre-8.2-ka event status during the period of analysis, but remained more productive for centuries after the climatic anomaly as judged from the pigment accumulation and assemblage composition. The change to more eutrophic conditions may have been triggered by erosion of marginal deposits. Together, these data confirm the chronology of hydrologic changes and suggest, for the first time, that lake levels exhibited both a decline and an increase in rapid succession in response to the 8.2-ka event in southern Scandinavia.  相似文献   

18.
Determination of carbon sources and microbial activity in lake sediment is important for understanding organic carbon preservation and methane production. This study aimed to determine the organic carbon sources and microbial activity over the last 140 years in sediments of methanotrophic Lake Rotsee (Switzerland). We investigated phospholipid-derived fatty acid biomarkers and their stable carbon isotope signatures in the sediments of this eutrophic lake. Strong bacterial activity in the sediment deposited during the 1920s–1960s could account for the relatively low ratio of long-chain to short-chain fatty acid ((C24 + C26 + C28)/(C14 + C16 + C18), TARFA) values, which is consistent with low TOC/TN ratios in the sediment deposited during that interval. The carbon stable isotope records, both bulk and compound-specific, showed greater values at such times, although the offset between the bulk and fatty acids decreased. This implies that the microbial community residing at sediment depths deposited in the 1960s preferentially utilised the compounds derived from the enhanced surface-water productivity at that time. This observation contrasts with data from the depth intervals before and after, when a major portion of the labile organic matter was derived from methane-sourced production. In sediments deposited before ca. 1964, the overall very low fatty acid δ13C values suggest that labile carbon was primarily derived from methanotrophs.  相似文献   

19.
We used ostracod species assemblages and their δ18O values in a 32-m sediment core from Lake Qinghai, China, along with information from cores collected at other sites in the lake, to infer lake evolution and hydroclimate changes since the last glacial. Dominant ostracod species Ilyocypris bradyi and its low δ18O values showed that Lake Qinghai was small in size or even consisted of several playa lakes, and the 1F core site could have even been in a wetland setting, under cold and dry climate conditions before 15.0 ka. Presence of Limnocythere inopinata with low δ18O values, and absence of I. bradyi after 15.0 ka, indicate the lake area increased or that the playas merged. The decrease or disappearance of ostracods with high δ18O values showed that the lake shrunk under dry climate from 12.0 to 11.6 ka. After 11.6 ka, hydroclimate shifts inferred from ostracod species changes (Eucypris mareotica and L. inopinata) and their δ18O values were as follows: (1) 11.6–7.4 ka—larger, but still small lake area with greater moisture availability under primarily dry climate conditions, (2) 7.4 to 3.2 ka—increasing lake level under a warmer and wetter climate, and (3) 3.2 ka to present—stable, large, brackish lake. The low ratio of lake water volume to runoff, and close proximity of the core site to freshwater input from the river mouth would have resulted in relatively lower ostracod δ18O values when Lake Qinghai was small in area during the interval from 32.0 to 15.0 ka. Lower ostracod δ18O values during interstadials and throughout the entire Last Glacial Maximum and early deglacial (ca. 24.0–16.0 ka) were caused by a greater contribution of seasonal meltwater from ice or snow and low incoming precipitation δ18O values related to cold climate conditions in the region at that time.  相似文献   

20.
A high-resolution, multi-proxy lake sediment record was used to establish the timing of Holocene environmental change in Canoran Lake, southwest Nova Scotia, Canada. Proxies include %C, δ15N, δ13C, HI, magnetic susceptibility, and pollen. Canoran Lake is a small, shallow (11 m) lake with two ephemeral inlets and an outlet. The site was deglaciated at ca. 15,300 cal (calibrated) year BP and elevated %C values indicate the establishment of a productive aquatic environment that is consistent with Allerød warming. The Allerød was interrupted by rapid air temperature cooling during the Younger Dryas (ca. 12,900–11,600 cal year BP). The Early Hypsithermal (ca. 11,600–8,500 cal year BP) was relatively warm and wet. A slight increase in clastic input occurred between 9,100 and 8,500 cal year BP but δ15N, δ13C, and HI values imply that the lithostratigraphic response may not be indicative of climate-induced change. The strong proxy response between 8,500 and 8,000 cal year BP was likely due to cooling and drying coincident with the 8.2 k year event. The climate was relatively warm and dry during the Late Hypsithermal (ca. 8,000–3,500 cal year BP). None of the proxies’ exhibit notable change during the 5,500 cal year BP hemlock decline, indicating that ecological change was likely due to a pathogen attack. Post-Hypsithermal (modern) climate was characterized by an increase in precipitation and a decrease in air temperatures from ca. 3,500 to 700 cal year BP (top of core).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号