首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The strong ground motion produced by the 17 October, 1989 Loma Prieta earthquake in northern California was recorded at over 100 stations. Accelerograms were generated at sites with significantly different geology, including land fill and soft sedimentary soil sites. In this study, the attenuation characteristics of the peak vertical and horizontal ground accelerations are studied for freefield recording conditions within 100 km of the source by the application of a non-linear multi-regression procedure. Two sets of attenuation models for weighted and unweighted observations are compared with those reported by other investigators for this earthquake and for regional and worldwide data. The peak ground acceleration (PGA) observations for this earthquake exceed previous predictions of standard attenuation models, particularly beyond 30 km (approximately 60 percent at 50 km). Higher attenuation of the vertical component compared to the horizontal is confirmed. The regression considers site geology as an independent parameter. Soil sites display as much as 23 per cent amplification relative to rock sites for horizontal PGA and as much as 40 per cent for vertical PGA. Amplification of the ground motion at sites characterized by soft soil geology is examined by comparing the recorded PGA with the corresponding prediction at sites underlain by stiff soil. Eight of ten of the soft soil sites display significant amplification relative to stiff soil sites (as much as 300 per cent for horizontal and 200 per cent for vertical components). Particular attention is paid to the so-called anomalous observations at distances beyond 50 km. The anomalous observations between 50 and 80 km may be attributed to various factors such as geology, basic geometry, azimuthal dependence, source mechanism and normal scatter of observations.  相似文献   

2.
In this study, the effect of ground geology on the acceleration response spectra is studied at 32 sites in Gujarat, India. The sites are grouped into Proterozoic, Mesozoic, Tertiary and Quaternary. The normalized acceleration response spectra at 5% damping of 407 strong ground motions (horizontal and vertical components) recorded at these sites varying in magnitude from 3.0 to 5.7 are determined. The study shows that the shape of the acceleration response spectra is influenced by the regional geology and local site conditions. The peak of maximum horizontal spectral amplification is between 0.03 and 0.05 s in Proterozoic formations, 0.06 and 0.10 s in Mesozoic formations, 0.06 and 0.08 s in Tertiary and 0.12 s in Quaternary formations. The maximum vertical spectral acceleration is at 0.025 s in Proterozoic, 0.07 s in Mesozoic, 0.05 s in Tertiary and 0.10 s in Quaternary formations. The average acceleration amplification factor in all the geological formations is between 2.5 and 3.0 both in horizontal and vertical components. It has been observed that acceleration response spectra at sites having same geological formations are also influenced by local site conditions. The study shows that the acceleration response spectrum in the current Indian code applicable for the entire country underestimates the seismic forces at hard-rock sites and overestimates at soft-soil sites. Using recorded strong motion data with Mw ranging from 3.5 to 5.7, an attenuation relationship is developed at six periods to predict geometric mean of horizontal spectral amplitudes for rock and soil sites. The spectral amplitudes predicted with the attenuation relationship match well with the observed one within statistical limits for hypocentral distances less than 200 km.  相似文献   

3.
Peak acceleration attenuation relations for horizontal and vertical components are presented for the Dinarides region, based on 145 3-component accelerograms related to 46 earthquakes with local magnitudes of 4.5 or greater and with epicentral distances of less than 200 km as recorded on 39 recording sites in the greater Dinarides region. The attenuation functions were obtained by two-stage stratified regression on the local magnitude and epicentral distance as independent variables. The predicted peak acceleration values within the distance range covered by the data are comparable to the ones obtained for stiff-soil or rock sites when selected reference relations are used. The rather large average residuals are caused mostly by the lack of information on local site conditions and by the use of epicentral distance instead of fault distance.  相似文献   

4.
Equations for the prediction of vertical peak and absolute acceleration spectral ordinates in terms of magnitude, source-distance and site geology are presented. Comparison to similarly derived horizontal equations shows vertical spectral values to be 1/2–1/4 of the horizontal. The influence of site geology on vertical ground motion is reduced with respect to the horizontal. Ratios of peak vertical to peak horizontal ground acceleration in the near-field of thrust faults are magnitude and distance dependent, reaching values in excess of one very near the fault of large magnitude events. For strike-slip faults the ratio exceeds one for moderate events, decreasing for larger events, and is distance independent. Spectral acceleration ratios exceed one at short periods but are less than one at intermediate and long periods, irrespective of the source mechanism.  相似文献   

5.
Consideration of vertical seismic design loads is important for long-span structural systems, short-period structures, and for some nonstructural components in the buildings. To this end, seismic design codes utilize alternative approaches to define vertical design spectrum at different levels of complexity: either as a fraction of horizontal design spectrum or using a separate functional form having features different than the horizontal spectrum. In all cases, a consistency between the horizontal and vertical design spectral ordinates is sought. In this paper, we consider a set of modern seismic design codes, horizontal and vertical ground-motion datasets, as well as ground-motion predictive models (GMPMs) to assess the accuracy of code-based vertical design spectrum expressions. We compute horizontal and vertical spectra for different earthquake scenarios (magnitude-distance-soil condition combinations) from the selected horizontal and vertical GMPMs for comparisons with their code-based (idealized) counterparts. Besides that, we study the vertical spectrum behavior from observed ground-motion data. Our observations suggest that the vertical design spectrum formulations by current codes do not fully explain the actual vertical spectral acceleration trends. We discuss the possible reasons behind the misrepresentation of vertical spectrum by the current code approach and introduce our own expressions to compute horizontal spectrum consistent vertical design spectrum from a comprehensive simulated dataset of correlated vertical and horizontal spectral ordinates.  相似文献   

6.
Over 700 accelerograms recorded from 12 earthquakes in northeast Taiwan have been analysed for investigating the behaviour of the vertical and horizontal peak and spectral ground motion in the near-source region. Pseudo-relative spectral velocities (PSV), at 5 per cent critical damping for 23 frequencies in the range of engineering interest have been subjected to non-linear regression procedures in terms of magnitude and hypocentral distance. Predicted response spectra for several discrete distances and magnitudes are presented. The results show that the shape of response spectra for both vertical and horizontal components of ground motion is magnitude- as well as distance-dependent. The 2/3 ratio of vertical to horizontal ground motion, commonly used in engineering applications, appears unconservative in the very near field for high frequency ground motion. However, it falls below 1/2 at distances greater than 50 km. The same ratio for peak ground velocity (PGV) and peak ground displacement (PGD) tends to increase with distance—the latter at a faster rate.  相似文献   

7.
We investigate a special type of variability in response spectral amplification ratios computed from numerical “engineering” models for a soft soil site. The engineering models are defined by shallow soil layers over “engineering” bedrock with a shear-wave velocity over 600–700 m/s and the model is subjected to vertical propagating shear waves. The variability, perhaps unique in earthquake engineering, is a result of the “perfectly accurate” computational procedure. For example, an engineering soil site model, subjected to two rock site records or the two horizontal components of a rock site record, produces different response spectral amplification ratios. We use a large number of strong-motion records from “engineering” rock sites, with a reasonably balanced distribution with respect to magnitude and source distance, generated by subduction earthquakes in Japan, to investigate the nature of the variability. In order to avoid any approximation in removing the effect of soil nonlinear response, we use a simple model, a single horizontal soil layer over a bedrock, modelled as elastic. We then demonstrate that a similar type of variability observed in the one- or two-dimensional nonlinear soil models is caused by the nature of response spectral amplification ratios, not a direct result of soil nonlinear response. Examination of variability reveals that the average of response spectral amplification ratios systematically depends on both earthquake magnitude and source distance. We find that, at periods much longer than the site natural periods of the soil sites, the scatter of the amplification ratios decreases with increasing magnitude and source distance. These findings may have a potential impact in establishing design spectra for soft soil sites using strong-motion attenuation models or dynamic numerical modelling.  相似文献   

8.
本文收集了从南北地震带川滇甘陕地区263个有详细场地资料的强震台站获得的802组强震动记录,按照场地、震级和震中距等因素统计分析了竖向与水平向加速度反应谱比的形状以及不同场地、震级和震中距下不同周期段内的谱比平均值,并与建筑抗震规范GB50011—2010规定的0.65进行了比较。结果表明:竖向与水平向加速度反应谱比受场地、震级和震中距等因素的影响; Ⅰ类和Ⅱ类场地在全周期段的谱比均值基本上大于0.65;无论何种分组情况谱比均值在0.1—1.0 s周期范围内基本低于定值0.65,周期大于1.0 s的谱比均值基本上远高于0.65。因此对于大部分抗震规范直接把竖向地震作用取为水平向地震作用的0.65倍,有待商榷。本文建议根据水平向反应谱的标定方式来确定现有竖向强震动记录的竖向地震作用。   相似文献   

9.
近断层竖向与水平向加速度反应谱比值特征   总被引:4,自引:2,他引:2       下载免费PDF全文
显著的竖向地震动是近断层地震动区别于远场地震动的重要特征之一,为更合理地确定竖向地震动作用,研究了近断层区域竖向地震动的反应谱特征及其与水平向反应谱比值的影响因素.首先,选取1952—1999年世界范围内震级在M5.4—7.6之间的18次地震的地震动记录,研究竖向地震加速度反应谱及其与水平向加速度反应谱比值特征;然后统计分析了断层距、场地条件、震级以及断层机制对竖向与水平向加速度反应谱比的影响.结果表明,一般情况下竖向加速度具有更丰富的短周期分量,并且竖向加速度反应谱衰减较慢;断层距在20km以内的近断层区域、软弱土层场地、中等震级地震和逆断层大震级中长周期范围等条件下,具有较大的竖向与水平向加速度反应谱比值;在近断层区域的结构抗震设计中应充分考虑竖向地震动的影响.  相似文献   

10.
The authors examine the reliability of site response estimations obtained by the horizontal to vertical (H/V) spectral ratios of microtremors by means of cross‐validation with the ratio of the horizontal spectra of earthquake motion with respect to reference sites. The data comprise microtremor and ground motion records recorded at 150 sites of Yokohama strong motion array. The use of non‐supervised pattern recognition techniques aims to group the sites with more objectivity. Attributes defining the overall shape of the amplification spectra serve as input in the computation of Euclidean distance similarity coefficients amongst sites. The implementation of the Ward clustering scheme leads to the attainment of a meaningful tree diagram. Its analysis shows the possibility of summarizing the results into six general patterns. A good coincidence of site effects estimates at 80 per cent of the sites becomes apparent. However, this coincidence appears poor for sites characterized by H/V amplification ratios around 2 or smaller and predominant periods longer than 0.5 s. In such cases, the presence of stiff, sandy sediments in the soil profile proves common. To proscribe H/V estimations, relying solely on the small spectral ratios criterion seems inadequate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A strong-motion accelerograph array in Santiago, Chile has been installed. One of the sites is located on rock and the other six sites are on soil ground with different surface geology, so that local site effects on ground motions can be studied. As a preliminary evaluation of the site effects, the spectral ratios of weak-motion records at soil sites with respect to the rock site are calculated. The spectral ratios show that the amplification of ground motions with respect to the rock site is approximately 1.25 on dense gravel deposits, 2.5 on stiff pumice ground and 3.5 on soft silt ground.  相似文献   

12.
Design spectra including effect of rupture directivity in near-fault region   总被引:4,自引:1,他引:4  
In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.  相似文献   

13.
欧洲中小震基岩水平向地震动衰减关系研究   总被引:4,自引:0,他引:4  
大震与中小震之间的地震动衰减规律有所不同.本文使用了132条欧洲基岩水平向记录研究中小震地震动衰减规律.震级范围在地方震级4~6级,距离在震源距70km以内.本文得到了峰值加速度和5%阻尼比、周期0.04~4.00秒之间的加速度反应谱的衰减关系.通过与欧洲和美国西部地震动衰减关系对比,分析了在地震活动性不同的地区内,大震与中小震之间存在的差异有何不同.  相似文献   

14.
2008年汶川地震近断层竖向与水平向地震动特征   总被引:12,自引:0,他引:12       下载免费PDF全文
选取分布在北川-映秀中央断裂两侧断层距120 km以内的40个强震动台站的记录,对汶川地震近断层地震动竖向和水平向加速度峰值、速度峰值、竖向和水平向加速度反应谱及谱比值进行了统计分析.研究表明:(1)地震动加速度峰值有显著的上盘效应,经验衰减模型的结果表明,在距地表破裂3~60 km的范围内,龙门山发震断层上盘一侧竖向与水平向的加速度峰值要比衰减模型得到的平均值大30%~40%.上盘的加速度峰值残差大部分是正值,而断层下盘残差大部分为负;水平地震动的东西分量幅值总体要大于南北分量,东西分量衰减相对较慢.(2)地震动长周期成分较弱,加速度反应谱值随周期增大而迅速减小,在周期1.0 s 时,即使在靠近中央断裂的最大加速度反应谱值也只有0.5 g;地震动加速度反应谱谱比值(竖向/水平向)沿龙门山断层周围的分布,在较长周期(T=0.2 s, 0.5 s, 1.0 s)与短周期(T=0.05 s, 0.1 s)有明显的不同.(3)近断层竖向地震动显著,地震动加速度峰值比在(竖向/水平向)可达1.4.在龙门山发震断层的上盘,地震动加速度峰值比整体上比下盘要大,竖向地震动尤为剧烈.部分近断层记录的地震动谱比值(竖向/水平向)在短周期(< 0.1 s)甚至超过1.5,统计分析还表明谱比值在短周期段(< 0.1 s)随断层距的增大而减小.  相似文献   

15.
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects.  相似文献   

16.
Our previous studies show that site effects (amplification of rock motions), source and path effects are coupled when response spectra are used to characterize the amplification ratios for a soil site modelled as nonlinear or elastic. The coupling is referred to as a “side effect” of using response spectral amplification ratios. In the present study we use a suite of rock site records, well distributed with respect to magnitude and source distance, from crustal, subduction interface and slab earthquakes to evaluate the response spectral amplification ratio for soft soil sites. We compare these side-effects for ground motions generated by three types of earthquakes, and we find that, at periods much shorter or much longer than the natural period of a soil site modelled as elastic, the average amplification ratios with respect to rock site ground motions from three types of earthquakes are moderately different and are very similar for other spectral periods. These differences are not statistically significant because of the moderately large scatter of the amplification ratios. However, the extent of magnitude- and source-distance-dependence of amplification ratios differs significantly. After the effects of magnitude and source distance on the amplification ratios are accounted for, the differences in amplification ratios between crustal and subduction earthquake records are very large in some particular combinations of source distance and magnitude range. These findings may have potential impact in establishing design spectra for soft soil sites using strong motion attenuation models or numerical modelling.  相似文献   

17.
Empirical equations are presented for the prediction of displacement response ordinates for damping ratios of 2, 5, 10, 20 and 30% of critical and for response periods up to 4s, using 532 accelerograms from the strong‐motion databank from Europe and the Middle East. The records were all re‐processed and only employed for regressions at periods within the usable range, defined as a fraction of the filter cut‐off and depending on the instrument type (digital or analogue), earthquake magnitude and site class. The equations can be applied to predict the geometric mean displacement and pseudo‐acceleration spectra for earthquakes with moment magnitudes ( M ) between 5 and 7.6, and for distances up to 100km. The equations also include style‐of‐faulting and site class as explanatory variables. The predictions obtained from these new equations suggest that earlier European equations for spectral displacements underestimate the ordinates at longer periods as a result of severe filtering and the use of the spectral ordinates at periods too close to the filter cut‐off. The results also confirm that the period defining the start of the constant displacement plateau in the Eurocode 8 (EC8) spectrum is excessively short at 2s. The results not only show that the scaling factor defined in EC8 for estimating the spectral ordinates at damping ratios different from 5% of critical are a good general approximation, but also that this scaling varies with magnitude and distance (reflecting the influence of duration) and also displays a mild dependence on response period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The parameters of S-wave attenuation (the total effect of absorption and scattering) near the Petropavlovsk (PET) station in Kamchatka were estimated by means of the spectral method through an original procedure. The spectral method typically analyzes the changes with distance of the shape of spectra of the acceleration records assuming that the acceleration spectrum at the earthquake source is flat. In reality, this assumption is violated: the source acceleration spectra often have a high-frequency cutoff (the source-controlled fmax) which limits the spectral working bandwidth. Ignoring this phenomenon not only leads to a broad scatter of the individual estimates but also causes systematic errors in the form of overestimation of losses. In the approach applied in the present study, we primarily estimated the frequency of the mentioned high-frequency cutoff and then constructed the loss estimates only within the frequency range where the source spectrum is approximately flat. The shape of the source spectrum was preliminarily assessed by the approximate loss compensation technique. For this purpose, we used the tentative attenuation estimates which are close to the final ones. The difference in the logarithms of the spectral amplitudes at the edges of the working bandwidth is the input for calculating the attenuation. We used the digital accelerograms from the PET station, with 80 samples per second digitization rate, and based on them, we calculated the averaged spectrum of the S-waves as the root mean square along two horizontal components. Our analysis incorporates 384 spectra from the local earthquakes with M = 4–6.5 at the hypocentral distances ranging from 80 to 220 km. By applying the nonlinear least-square method, we found the following parameters of the loss model: the Q-factor Q0 = 156 ± 33 at frequency f = 1 Hz for the distance interval r = 0–100 km; the exponent in the power-law relationship describing the growth of the Q-factor with frequency, γ = 0.56 ± 0.08; and the loss parameter beneath the station κ0 = 0.03 ± 0.005 s. The actual accuracy of the estimates can probably be somewhat lower than the cited formal accuracy. It is also established (with a confidence level of 10%) that the losses decrease with distance.  相似文献   

20.
齐玉妍  孙丽娜  吕国军  李慧 《地震》2019,39(4):172-180
2012年5月28日河北省唐山市古冶区与滦县交界发生4.8级地震, 国家强震动台网中心在河北、 天津和北京的94个强震动台站记录到了本次地震的加速度。 本文给出了获取记录的强震动台站分布及强震动记录结果, 统计了强震动记录数量随震中距的变化, 给出了3个较小震中距台站记录到的加速度时程; 绘制了空间地震动峰值加速度等值线图及周期0.2 s、 2.0 s加速度反应谱值的等值线, 发现峰值加速度等值线与长周期加速度反应谱等值线极值分布具有明显地域差异, 分析认为是由于厚沉积层对长周期地震动具有放大作用造成的。 通过强震动记录与适用于本区的三个衰减关系对比, 分析了此次地震的峰值加速度衰减特征, 同时研究了周期0.2 s、 2.0 s加速度反应谱值的衰减特征, 周期2.0 s反应谱值随震中距的衰减与衰减关系能较好地对应, 然而在震中距100~130 km沉积层较厚的集中地区, 表现出了实际记录较衰减关系值偏大的现象, 认为同样是由于厚沉积层对地震动加速度反应谱长周期的放大作用导致的。 研究了震中距差别不大的情况下, 场地类型与沉积层厚度对反应谱特征周期的影响, 对比基岩台站与软弱地基土层台站的强震动记录反应谱, 发现软弱土层台站的土层对地震动有一定的放大作用, 导致中长周期地震动被放大, 对比位于沉积层较薄的隆起区台站与位于沉积层较厚的凹陷区台站强震动记录反应谱, 发现厚的沉积层不仅对反应谱长周期有放大的作用, 同时也会使得反应谱特征周期值变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号