首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The evolving modes of the sea-surface temperature (SST) in the Tropical Atlantic on the short interannual (IA) timescale were obtained by performing the extended empirical orthogonal function (EEOF) analyses on this variable separately for the 106-year (1871–1976) and 20-year (1881–1900; 1901–1920; 1921–1940; 1941–1960) periods. The equatorial and inter-hemispheric patterns manifest in the first EEOF mode of each analysis as part of the short IA evolution of the SST anomalies in the Tropical Atlantic. Another outstanding feature of the first EEOF mode of each analysis concerns the propagations of the SST anomalies in the meridional direction within the 20°N–20°S band and in the zonal direction in the sector 40°W–20°W. For all analyses, the SST anomalies propagate northward from the equator to 15°N and southward from 20°N to 15°N, with the same sign anomalies merging approximately at 15°N. On the other hand, the SST anomalies propagate westward in the sector 40°W–20°W with a propagation rate close to that of the phase speed of the fastest baroclinic Rossby wave in the ocean. So, the observed propagations of the SST anomalies in the 20°N–20°S band might result from the combined effect of the surface oceanic currents in this band and the baroclinic Rossby waves in the ocean.  相似文献   

2.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

3.
Summary In this paper, the relationship between seasonal mean (June, July, August and September) monsoon circulation features and the midlatitude circulations in winter and spring seasons have been examined during contrasting years of more (less) number of snow days in winter/spring followed by deficient (excess) Indian Summer Monsoon Rainfall (ISMR) using NCEP/NCAR reanalyzed data for the period 1966–1994. The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used to calculate the number of days of snow over west and east Eurasia separately under three classes: class 1 for SD>5cm, class 2 for SD>10cm and class 3 for SD>50cm where SD stands for snow depth. Correlation coefficients are computed between the anomaly in the number of days of snow depth under the above three classes during winter/spring over west and east Eurasia and the subsequent ISMR. HSDSD data show that difference in the number of days of SD>10cm in two extreme years is most prominent in the west Eurasia in the months of January and April. Also the anomaly in the number of days of snow in January and April over west Eurasia has correlation coefficients of –0.69 and –0.56 with the following ISMR, respectively at 0.1% significance level when the SD is more than 10cm at all the stations. Results also show that low-level atmospheric temperature difference between two extreme years of snow days in winter is up to 10°C and the cooling persists up to spring season with a difference of 2°C. This cooling persistence may give rise to anomalous cyclonic circulations over the midlatitudes and tropics which may be responsible for weakening the monsoon circulation over India during the year of more snow days over west Eurasia.  相似文献   

4.
Summary Trends of monthly air temperature extremes were investigated in five meteorological stations of the Grand-Duchy of Luxembourg during the period 1949–1998. The application of an innovative homogenization method based on the concept of relative homogeneity to climatic time series allows identifying multiple break points, as well as correcting data series in an objective and robust statistical way. The rise of maximum temperature (Tmax) has occurred at a rate of 1.5 times that of the minimum temperature (Tmin) in winter (+1.4°C versus +0.9°C) and summer (+1.4°C versus +0.8°C). No trend in temperature extremes was found in autumn, while spring was affected by a small warming (+0.3°C) of Tmin and no change in Tmax resulting in a decrease of the diurnal temperature range (DTR) (–0.3°C). In spring, a strong positive linear relationship between Tmin warming and local terrain slope could be found. Comparison to new-gridded large-scale climatologies indicates generally close agreement to temperature trends during the 1949–1998 period, while a lower local warming was observed in summer during the post-1975 period following the changing-point year of atmospheric circulation over North-western Europe. This study shows that the question of data homogeneity is not trivial and should receive careful attention before quantifying historical temperature trends and identifying their spatial patterns at regional scale.  相似文献   

5.
Summary This study uses a 1°×1° lat/long dataset, extracted from ECMWF re-analyses for the 15-year period 1979–1993 (ERA-15), to diagnose the synoptic-scale kinematic, thermodynamic and moisture environments in the vicinity of named tropical cyclones (TCs) in the eastern North Pacific. Based on the NCDC best track dataset, TCs are partitioned into one of three categories: weak (W), strong (S) or intensifying (I). In total, 63TCs are examined: 8Ws and 20Is at point A (maximum intensification) and 11Ws, 13Ss and 11Is at point B (maximum frequency). Composite maps are compiled for all five groups, and six individual case studies are examined, four for extreme TC cases and two for cases involving dry air intrusions.For the most part, peak values and patterns of composited ERA-15 variables display circulation, thermodynamic and moisture characteristics that are compatible with the strength represented by a groups classification. Intercomparison between Ws and Is at points A and B yielded larger conditional instability of low-level air parcels and upper-level outflow within the region of maximum intensification (point A).The intrusions of dry versus moist mid-level air are addressed for each storm with the assistance of 72-hour backward trajectories. Trajectory density maps indicate two preferred paths of air parcels that reach the environment of W storms at point A on the 700 and 500hPa levels. The first one crossed Central America in the region of the Isthmus of Tehuantepec and the second one south of the Central American mountains. Several storms revealed that these trajectories were associated with dry air intrusions into the larger storm area, and this might be one reason for their weak status at point A. One documented example is Kevin (1985). By the time it reached point B, the dry air was replaced by air that was moist and Kevin intensified, although it remained a W system. In contrast, Narda (1989) received a dry air intrusion from Central Mexico at 500hPa as a weak storm at point B and did not intensify. Despite possible analyses problems, the documentation in this study of mid-level dry air intrusions into eastern Pacific TCs from the Mexican-Central American region suggests a hitherto unexploited forecast potential. Received January 15, 2002; revised November 28, 2002; accepted December 19, 2002 Published online: May 8, 2003  相似文献   

6.
Summary A simple parameterization for the estimation of turbulent kinetic energy (TKE) and momentum flux profiles under near-neutral stratification based on sodar measurements of the vertical velocity variance has been tested using data from the LINEX-2000 experiment. Measurements included operation of a phased-array Doppler sodar DSDPA.90 and of a sonic anemometer USA-1 mounted at a meteorological tower at a height of 90m. Good agreement has been found between the TKE and momentum flux values derived from the sonic and sodar data (with correlation coefficients r>0.90 and a slope of the regression lines of about 1.01.1) suggesting the possible use of sodar measurements of w 2 to derive turbulence parameter profiles above the tower range.  相似文献   

7.
Summary ¶The 0°C isotherm height, a parameter needed for the estimation of attenuation of microwave and millimetre wave for earth-space communication, has been estimated for different stations spread over India. The variations of 0°C isotherm height for different seasons over these stations are presented. Attenuations of radio wave due to rain at frequencies 10GHz and above have also been estimated for few stations using the 0°C isotherm height so derived. The results are useful for radio systems designers.  相似文献   

8.
Summary ¶In order to better understand land-atmosphere interactions and increase the predictability of climate models, it is important to investigate the role of forest representation in climate modeling. Corresponding to the big-leaf model commonly employed in land surface schemes to represent the effects of a forest, a so called big-tree model, which uses multi-layer vegetation to represent the vertical canopy heterogeneity, was introduced and incorporated into the National Center for Atmospheric Research (NCAR) regional climate model RegCM2, to make the vegetation model more physically based. Using this augmented RegCM2 and station data for China during 1991 Meiyu season, we performed 10 experiments to investigate the effects of the application of the big-tree model on the summer monsoon climate.With the big-tree model incorporated into the regional climate model, some climate characteristics, e.g. the 3-month-mean surface temperature, circulation, and precipitation, are significantly and systematically changed over the model domain, and the change of the characteristics differs depending on the area. Due to the better representation of the shading effect in the big-tree model, the temperature of the lower layer atmosphere above the plant canopy is increased, which further influences the 850hPa temperature. In addition, there are significant decreases in the mean latent heat fluxes (within 20–30W/m2) in the three areas of the model domain.The application of the big-tree model influences not only the simulated climate of the forested area, but also that of the whole model domain, and its impact is greater on the lower atmosphere than on the upper atmosphere. The simulated rainfall and surface temperature deviate from the originally simulated result and are (or seem to be) closer to the observations, which implies that an appropriate representation of the big-tree model may improve the simulation of the summer monsoon climate.We also find that the simulated climate is sensitive to some big-tree parameter values and schemes, such as the shape, height, zero-plane displacement height and mixing-length scheme. The simulated local/grid differences may be very large although the simulated areal-average differences may be much lower. The area-average differences in the monthly-mean surface temperature and heat fluxes can amount to 0.5°C and 4W/m2, respectively, which correspond to maximum local/grid differences of 3.0°C and 40W/m2 respectively. It seems that the simulated climate is most sensitive to the parameter of the zero-plane displacement among the parameters studied.  相似文献   

9.
Summary The Tierras Bajas regions of eastern Santa Cruz, Bolivia have undergone among the most rapid rates of concentrated deforestation during the 1980s and 1990s. We investigate the sensitivity of local climate to these land cover changes as observed from Landsat images acquired between 1975 and 1999. The Simple Biosphere model (SiB2) is used to assess the effects of both morphological and physiological changes in vegetation and the implications for fluxes of water, energy and carbon between the vegetation and the atmosphere during the rainy season.Conversion from tropical forest to cropland implicates morphological changes in vegetation as the primary drivers for a daily maximum warming of about 2°C and a slight nighttime cooling, suggesting that clearing of tropical forests for agricultural use may increase the diurnal temperature range, mainly by increasing the maximum temperature. On the other hand, the conversion of wooded grassland to cropland resulted in a similar daily warming and drying but exclusively due to vegetation physiological activity.The area-averaged monthly mean response for each conversion type resulted in a warming of about 0.6°C for the conversion of broadleaf evergreen and 1.2°C for conversion of wooded grassland. These temperature differences represent an augmentation in the local heat source associated with a reduction in evapotranspiration due to land cover conversion and do not reflect variations forced by changes in atmospheric circulation.When averaged over the entire domain, the effect of landscape conversion results in a reduction of the latent heat flux and an increase in sensible heat flux, producing a large-scale apparent heat source of 0.5°C during January. This warming is in line with an increasing trend observed in monthly mean temperature in Santa Cruz, Bolivia during the same period.  相似文献   

10.
Summary This study examines the impact of ice formation and growth processes on freezing drizzle formation in stably stratified clouds. In particular we investigate the reason why freezing drizzle is rarely observed in clouds with top temperatures less than –15°C. We also investigate the sensitivity of freezing drizzle formation to the Hallett Mossop secondary ice process (Hallet and Mossop, 1974). The evaluation is performed by simulating cloud formation over a two-dimensional idealized mountain using a detailed microphysical scheme. The height and width of the two-dimensional mountain were designed to produce an updraft pattern with extent and magnitude similar to documented freezing drizzle cases. The simulations show that: (i) drizzle formation is very sensitive to the ice crystal concentration, with a significant reduction in the area over which drizzle forms and the maximum drizzle water content as the cloud top temperature decreases below –10°C, and (ii) secondary ice crystal formation has a significant effect on drizzle formation at cloud top temperatures below –10°C.The above two factors are likely the main cause for the lack of freezing drizzle at cloud top temperatures less than –15°C. We also found that neglecting the depletion of ice forming nuclei resulted in considerable overestimation of the ice crystal concentration and suppression of drizzle, even for the –10°C case.  相似文献   

11.
Summary Statistical characteristics of extremely low and high daily mean temperatures in summer (June, July and August) in eastern China have been investigated. The extremely low temperatures are defined as those days with temperatures not exceeding the 10th percentile with respect to the reference period of 1961–90; similarly the extremely high temperatures are defined as those exceeding the 90th percentile. There are well-defined spatial structures in trends of the frequency of extremely low temperatures as well as of high temperature extremes. In the north region (i.e. northern and northeastern China) the linear trends of frequency of low and high temperature extremes are –1.09 and +1.23 days/10yr, respectively. For the southern portion of the study area, the trends are –1.32 and –2.32 days/10yr. Taking the study area as a whole, the linear trends are –0.76 days/10yr and +1.08 days/10yr, respectively. The changes of frequency of extreme temperatures are mainly related to the shift in the temperature means. There is a dominant anticyclonic pattern in the lower- to middle troposphere over East Asia in association with warmer conditions in the north region. For the south region there is a jump-like change in the summer mean temperature and the extreme temperature events in around 1976. The large-scale northwestern Pacific subtropical high plays an important role in the jump-like changes of the temperature extremes.  相似文献   

12.
Summary The Earths local fair-weather electric field is significantly affected by small ions present in the atmosphere. These ions are typically smaller than 0.001µm and occur in concentrations from 500 to 600cm–3 in air. Attachment to larger aerosol particles may severely decrease the mobility of these atmospheric ions resulting in an increased local electric field. The number concentration of environmental aerosol particles in the size range 0.1 to 5.0µm was measured with two automatic laser scattering particle counters. The Earths electric field was monitored with an electric fieldmeter. Measurements were made in clean air and in an environment highly polluted by wood smoke. The electric field was found to be positively correlated to the aerosol number concentration. During one 24-hour period of measurement, the electric field increased from 180 to about 280Vm–1 as the number concentration of aerosols larger than 0.1µm increased from about 2000 to 9000cm–3. The number concentrations of aerosols larger than 0.1 and 0.3µm were both found to be positively correlated with the Earths electric field with correlation coefficients of 70% and 61%, respectively.Present address: School of Physical Sciences, Queensland University of Technology, Brisbane 4001, Australia.  相似文献   

13.
Summary ¶During the Post-TAMEX forecast experiment of Taiwan in 1992, a mesoscale convective system (MCS) developed on June 5–6 over southern China. As this system matured, it produced readily apparent cirrus outflow on satellite imageries while the upper level flow also exhibited a diffluent pattern. The purpose of the current study is to examine the possible changes in its environment associated with the development of this MCS.By using 12-h data from 1200 UTC June 5 to 1200 UTC June 6, objective analyses were performed for a 1°×1° latitude/longitude grid using sounding data and a low-pass filter. To facilitate the diagnosis, a band-pass filter was further applied to separate mesoscale features from macroscale ones, while the apparent heat source and apparent moisture sink defined by Yanai et al (1973) were also calculated.Results suggest that the MCS exerted clearly discernable effects on its environment. The latent heat release led to the development of a warm core and mesoscale high-pressure disturbance at upper levels when the system matured. Ageostrophic winds and diffluent flow patterns together with strong anticyclonic vorticity at 200hPa near the MCS were associated with the mesohigh. After the mature stage, weak cooling occurred above 350hPa, likely due to radiative emission from the cloud top. However, a mid-level cyclonic vortex, often present in MCSs over the North America, was not apparent here due to weak environmental vorticity and small Coriolis parameter f. The level of maximum divergence was initially located at 500hPa, but rose to 200hPa as the MCS matured. In response, the upward motion not only intensified, but the level at which strongest rising occurred also ascended from 700 to 350hPa. Results from the apparent heat source and moisture sink calculation suggest that this slow ascent of maximum heating was partially due to vertical transport of sensible heat by updrafts.During the MCSs mature stage, under the stratiform clouds to the west of the strongest convection, a cold mesohigh formed at the surface due to evaporative cooling in downdrafts, and a gust front appeared along the leading edge of the outflow boundary. A trailing mesolow was also observed, likely due to near-adiabatic warming in drier downdrafts since no precipitation was associated with it.Received April 11, 2002; revised May 27, 2002; accepted July 14, 2002 Published online: April 10, 2003  相似文献   

14.
Air temperature retrieval from remote sensing data based on thermodynamics   总被引:4,自引:0,他引:4  
Summary A new approach to retrieving air temperature from land surface temperature is presented. The new method is based on thermodynamics. Two important parameters, namely crop water stress index and aerodynamic resistance, were used to build a quantitative relationship between the land surface temperature and the ambient air temperature. The method was applied using MODIS satellite data for a location situated in the North China Plain. Comparing the measurement values at meteorological stations with air temperature, derived by the method for certain pixels, indicates that derived values can be obtained within an accuracy of 3°C for more than 80% of data processed. Sensitivity studies also suggest that inaccuracies associated with measurement error in the model variables are also within the 3°C range.  相似文献   

15.
Summary Based on Chinas fifth population survey (2000) data and homogenized annual mean surface air temperature data, the urban heat island (UHI) effect on the warming during the last 50 years in China was analyzed in this study. In most cities with population over 104, where there are national reference stations and principal stations, most of the temperature series are inevitably affected by the UHI effect. To detect the UHI effect, the annual mean surface air temperature (SAT) time series were firstly classified into 5 subregions by using Rotated Principal Components Analysis (RPCA) according to its high and low frequency climatic change features. Then the average UHI effect on each subregions regional annual mean STA was studied. Results indicate that the UHI effect on the annual mean temperatures includes three aspects: increase of the average values, decrease of variances and change of the climatic trends. The effect on the climatic trends is different from region to region. In the Yangtze River Valley and South China, the UHI effect enhances the warming trends by about 0.011°C/decade. In the other areas, such as Northeast, North-China, and Northwest, UHI has little impact on the warming trends of the regional annual temperature; while in the Southwest of China, introducing UHI stations slows down the warming trend by –0.006°C/decade. But no matter what subregion it is, the total warming/cooling of these effects is much smaller than the background change in regional temperature. The average UHI effect for the entire country, during the last 50 years is less than 0.06°C, which agrees well with the IPCC (2001). This suggests that we cannot conclude that urbanization during the last 50 years has had much obvious effect on the observed warming in China.  相似文献   

16.
Summary This study used monthly rainfall totals for the period 1961 to 1988 and pentad OLR values for the period 1974 to 1991 to study the structure and transition of active convention across the Congo Basin (10°S–5°N, 15°E–35°E) from the southern to the northern hemisphere summer. This involved the examination of map patterns and cross-sections of monthly rainfall and pentad OLR data.The results from the study indicated that there were two seasons observed over the Congo Basin; one is the wet season lasting from September to April and the other a dry season covering the rest of the year. The onset of the wet season takes place rapidly with active convection spreading very quickly to the south near latitude 20°S. This is due to the formation of the meridional (north–south) branch of the ITCZ over this region.This study has confirmed that the annual rainfall over the Congo Basin is reliable with the coefficient of variation of less than 30%. The wet seasons (e.g., SON and DJF) also show reliable rainfall occurrence but the dry season (e.g., JJA) has low reliability.The anomalously wet seasons are characterised by a relatively slow transition rate (1° latitude per pentad) of zones of active convection resulting in a late withdrawal of the rainy season while the dry seasons show a rapid transition rate with an early withdrawal of zones of active convection.High-rainfall months (>200mm) are concentrated within the Southern Hemisphere summer months. These high-rainfall months progress from the equator to the southern latitude following generally the movement of the overhead sun.The results further revealed that the years 1987/1984 had the lowest/highest mean OLR values over the Congo Basin within the period 1979 to 1991. The rates of transition of the zones of low OLR values were 0.9/5.0 degrees of latitude during 1987/1984, respectively.Received June 18, 2002; revised September 30, 2002; accepted November 21, 2002 Published online: June 12, 2003  相似文献   

17.
Atmospheric response to soil-frost and snow in Alaska in March   总被引:2,自引:0,他引:2  
Summary A hydro-thermodynamic soil-vegetation model including soil freezing/thawing (soil-frost) and snow-metamorphism has been integrated into the PennState/NCAR Mesoscale Meteorological Model MM5 in a two-way coupled mode. A hierarchy of simulations with and without the soil-frost module, each combined with and without the snow module, shows the influence of snow-cover and soil-frost on weather in Alaska. Herein the landscape is featured as it is typically by mesoscale models.Theoretical considerations suggest that organic soil types should be considered in mesoscale modeling because of their different thermal and hydrological behavior as compared to mineral soils. The Ludwig-Soret and Dufour effects are small, but increase appreciably during freezing/thawing and snow-melt.The snow and soil-frost processes have a demonstrable impact on the surface thermal and hydrological regimes and on the near-surface atmospheric conditions even on the short (synoptic) timescales. The presence of snow-cover results in a highly stable stratification. In cloud-free areas, the enhanced loss of radiant energy and cooling of the air over snow-cover lead to a positive feedback to relatively colder, drier conditions. In cloudy areas, a positive feedback to warmer, moister conditions develops over snow-cover. As the changes in atmospheric humidity and temperature caused by snow-cover propagate into the pressure field, sea level pressure is lower by more than 1hPa in the simulations with snow-cover. Although the effect of soil-frost alone is an order of magnitude smaller, the soil-frost snow system leads to an increase of the pressure difference to 1.2hPa. The changes in the pressure field alter wind speed and direction slightly.Soil-frost results in soil temperature differences of 2–5K in the upper soil layers, while snow results in differences of 3–10K. Soil-frost has a notably greater impact in cloud-free than cloudy areas. When a snow-cover is present, frozen soil enhances the insulating effect of a snow-cover in cloudy areas, but reduces it in cloud-free areas. In cloudy areas, soil-frost without snow-cover leads to cooler, drier atmospheric conditions relative to no frost. In cloudy areas, soil-frost under a snow-cover reduces the water supply to the atmosphere as compared to snow-covered conditions without soil-frost. The combined effects of soil-frost and snow increase precipitation locally by as much as 12.2mm/ 48h. If mesoscale modeling does not consider the soil-frost snow system, predicted water vapor fluxes will be too high in cloud-free areas, and too low in cloudy areas.  相似文献   

18.
Summary The Balkan Peninsula is situated in the impact zone of Saharan dust storms. The case of Saharan dust transport to Belgrade in the period of 14–17 April 1994 is analyzed using the Eta model for synoptic and meso scale processes. Air back trajectories are calculated at six model levels from 434 up to 5129m with horizontal grid resolutions of 1°×1° and 10×10. Following cyclonic circulation the dust was picked up from North Africa, and transported over Mediterranean. Simultaneously, according to the analysis of the three lowest trajectories, transport of trace metals from Macedonia and southern Serbia by the Koshava wind might be dominant in the observed episode. Turbulent flow enhanced the coagulation process of initially clean dust particles with particles containing Pb and Cd. The coagulation and scavenging processes below and in clouds increased deposition rates of Pb and Cd in Belgrade in the course of wet removal, and consequently trough resuspension processes. Dry deposition samples contained characteristic particles up to 30µm in diameter with Fe content of 11 to 15 atomic% and significant ratio Si/Fe of 3 to 5, determined for selected single particles by the SEM/EDX method. Following dry and wet deposition of Cd and Pb, a residual effect of dustfall is noticed throughout the vegetational period.  相似文献   

19.
Summary The study on the characteristics of aerosol in Seoul during springtime from 1998 to 2003 is performed by the size-resolved number concentrations of aerosol. Asian dust events occur in spring most frequently, but it has been often observed in wintertime since 1999. Since 2000, the number of Asian dust days has been increasing, and the intensity has been more severe until 2002. However, there were only 3 dust days in Seoul during the spring of 2003, since the synoptic cyclone was relatively not intense enough to rise and transport dust to Korean peninsula, and the air stream was usually tiled to north of Korean peninsula. In addition, the precipitation was relatively plentiful and the air temperature was cold enough not to keep dry soil condition.Haze is the suspended particles in the air, reducing visibility by scattering light, and it is often a mixture of aerosols and photochemical smog. Dry particles with diameters of the order of 0.1µm, are small enough to scatter short wavelengths of light. Haze occurs well in winter and spring, and severe haze is observed in the afternoon. The occurrence frequency of haze has been decreasing since 2000 except in May of 2003.During Asian dust events from 1998 to 2003, the number concentration of aerosol with diameters from 0.3µm to 0.5µm decreases notably, but that larger than 1µm increases rapidly. On the other hand, for the haze events the number concentration from 0.3µm to 0.5µm increases notably, but that larger than 1µm decreases.  相似文献   

20.
Summary ¶Two cyclonic vortices close to each other, a binary cyclone or binary system, tend to rotate cyclonically relative to one another and to merge, i.e. the Fujiwhara effect. The point vortex model that represents barotropic binary cyclones predicts their rotation features as follows. The rotation rate is proportional linearly to the sum of the cyclones intensities and inversely to the square of their separation distance while the more intense cyclone rotates slower. Our earlier observational analysis of 1423 mid-latitude binary cyclones (Ziv and Alpert, 1995) showed a reasonable fit to theory, except for the absence of a correlation between individual speeds and intensities within the binary systems, and a reversal of the inverse rotation-separation relationship at the range of 1400–1800km.This study is the first attempt to describe the mid-latitude binary systems using potential vorticity concepts (PV thinking), which implies that a binary interaction takes place between the 3-D flow patterns induced by upper-PV or surface-thermal anomalies rather than by the surface cyclones alone. It is argued that the upper-anomalies dominate the rotation process, and hence the rotational speeds of the interacting surface cyclones are more closely correlated with the relative intensities of their corresponding upper-level anomalies rather than with their own intensities, as reflected in weather charts. Data analysis indicates that mid-latitude binary cyclones are normally associated with at least one upper-PV anomaly. This explains the absence of a correlation between the rotation speed and the intensity of the surface cyclones there.A unique type of a mid-latitude binary system is identified, in which one cyclone coincides with an upper major PV-anomaly and the other moves along the periphery of the former. Such a binary system is entitled here the Contact Binary System (CBS), in contrast with remote interacting systems implied by the point vortex theory.Analytical considerations yield an increase in the rotation rate with separation for CBSs of separation smaller than 1000–1500km, in contrast to the normal decrease with R 2. The contribution of CBSs is suggested here to explain the abnormal increase in rotation rate at 1400–1900km range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号