首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A major complication caused by anisotropy in velocity analysis and imaging is the uncertainty in estimating the vertical velocity and depth scale of the model from surface data. For laterally homogeneous VTI (transversely isotropic with a vertical symmetry axis) media above the target reflector, P‐wave moveout has to be combined with other information (e.g. borehole data or converted waves) to build velocity models for depth imaging. The presence of lateral heterogeneity in the overburden creates the dependence of P‐wave reflection data on all three relevant parameters (the vertical velocity VP0 and the Thomsen coefficients ε and δ) and, therefore, may help to determine the depth scale of the velocity field. Here, we propose a tomographic algorithm designed to invert NMO ellipses (obtained from azimuthally varying stacking velocities) and zero‐offset traveltimes of P‐waves for the parameters of homogeneous VTI layers separated by either plane dipping or curved interfaces. For plane non‐intersecting layer boundaries, the interval parameters cannot be recovered from P‐wave moveout in a unique way. Nonetheless, if the reflectors have sufficiently different azimuths, a priori knowledge of any single interval parameter makes it possible to reconstruct the whole model in depth. For example, the parameter estimation becomes unique if the subsurface layer is known to be isotropic. In the case of 2D inversion on the dip line of co‐orientated reflectors, it is necessary to specify one parameter (e.g. the vertical velocity) per layer. Despite the higher complexity of models with curved interfaces, the increased angle coverage of reflected rays helps to resolve the trade‐offs between the medium parameters. Singular value decomposition (SVD) shows that in the presence of sufficient interface curvature all parameters needed for anisotropic depth processing can be obtained solely from conventional‐spread P‐wave moveout. By performing tests on noise‐contaminated data we demonstrate that the tomographic inversion procedure reconstructs both the interfaces and the VTI parameters with high accuracy. Both SVD analysis and moveout inversion are implemented using an efficient modelling technique based on the theory of NMO‐velocity surfaces generalized for wave propagation through curved interfaces.  相似文献   

3.
The azimuthally varying non‐hyperbolic moveout of P‐waves in orthorhombic media can provide valuable information for characterization of fractured reservoirs and seismic processing. Here, we present a technique to invert long‐spread, wide‐azimuth P‐wave data for the orientation of the vertical symmetry planes and five key moveout parameters: the symmetry‐plane NMO velocities, V(1)nmo and V(2)nmo , and the anellipticity parameters, η(1), η(2) and η(3) . The inversion algorithm is based on a coherence operator that computes the semblance for the full range of offsets and azimuths using a generalized version of the Alkhalifah–Tsvankin non‐hyperbolic moveout equation. The moveout equation provides a close approximation to the reflection traveltimes in layered anisotropic media with a uniform orientation of the vertical symmetry planes. Numerical tests on noise‐contaminated data for a single orthorhombic layer show that the best‐constrained parameters are the azimuth ? of one of the symmetry planes and the velocities V(1)nmo and V(2)nmo , while the resolution in η(1) and η(2) is somewhat compromised by the trade‐off between the quadratic and quartic moveout terms. The largest uncertainty is observed in the parameter η(3) , which influences only long‐spread moveout in off‐symmetry directions. For stratified orthorhombic models with depth‐dependent symmetry‐plane azimuths, the moveout equation has to be modified by allowing the orientation of the effective NMO ellipse to differ from the principal azimuthal direction of the effective quartic moveout term. The algorithm was successfully tested on wide‐azimuth P‐wave reflections recorded at the Weyburn Field in Canada. Taking azimuthal anisotropy into account increased the semblance values for most long‐offset reflection events in the overburden, which indicates that fracturing is not limited to the reservoir level. The inverted symmetry‐plane directions are close to the azimuths of the off‐trend fracture sets determined from borehole data and shear‐wave splitting analysis. The effective moveout parameters estimated by our algorithm provide input for P‐wave time imaging and geometrical‐spreading correction in layered orthorhombic media.  相似文献   

4.
Although it is believed that natural fracture sets predominantly have near‐vertical orientation, oblique stresses and some other mechanisms may tilt fractures away from the vertical. Here, we examine an effective medium produced by a single system of obliquely dipping rotationally invariant fractures embedded in a transversely isotropic with a vertical symmetry axis (VTI) background rock. This model is monoclinic with a vertical symmetry plane that coincides with the dip plane of the fractures. Multicomponent seismic data acquired over such a medium possess several distinct features that make it possible to estimate the fracture orientation. For example, the vertically propagating fast shear wave (and the fast converted PS‐wave) is typically polarized in the direction of the fracture strike. The normal‐moveout (NMO) ellipses of horizontal reflection events are co‐orientated with the dip and strike directions of the fractures, which provides an independent estimate of the fracture azimuth. However, the polarization vector of the slow shear wave at vertical incidence does not lie in the horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip. Also, for oblique fractures the shear‐wave splitting coefficient at vertical incidence becomes dependent on fracture infill (saturation). A complete medium‐characterization procedure includes estimating the fracture compliances and orientation (dip and azimuth), as well as the Thomsen parameters of the VTI background. We demonstrate that both the fracture and background parameters can be obtained from multicomponent wide‐azimuth data using the vertical velocities and NMO ellipses of PP‐waves and two split SS‐waves (or the traveltimes of PS‐waves) reflected from horizontal interfaces. Numerical tests corroborate the accuracy and stability of the inversion algorithm based on the exact expressions for the vertical and NMO velocities.  相似文献   

5.
For converted waves, stacking as well as AVO analysis requires a true common reflection point gather which, in this case, is also a common conversion point (CCP) gather. The coordinates of the conversion points for PS or SP waves, in a single homogeneous layer can be calculated exactly as a function of the offset, the reflector depth and the ratio vp/vs. An approximation of the conversion point on a dipping interface as well as for a stack of parallel dipping layers is given. Numerical tests show that the approximation can be used for offsets smaller than the depth of the reflector under consideration. The traveltime of converted waves in horizontal layers can be expanded into a power series. For small offsets a two-term truncation of the series yields a good approximation. This approximation can also be used in the case of dipping reflectors if a correction is applied to the traveltimes. This correction can be calculated from the approximated conversion point coordinates.  相似文献   

6.
It has been shown in the past that the interval-NMO velocity and the non-ellipticity parameter largely control the P-wave reflection time moveout of VTI media. To invert for these two parameters, one needs either reasonably large offsets, or some structure in the subsurface in combination with relatively mild lateral velocity variation.This paper deals with a simulation of an inversion approach, building on the assumption that accurately measured V NMO, as defined by small offset asymptotics for a particular reflector, were available. Instead of such measurements we take synthetically computed data. First, an isotropic model is constructed which explains these V NMO. Subsequently, residual moveout in common image gathers is modelled by ray tracing (replacing real data), along with its sensitivity for changes in the interval-NMO velocity and the non-ellipticity parameter under the constraint that V NMO is preserved. This enables iterative updating of the non-ellipticity parameter and the interval-NMO velocity in a layer that can be laterally inhomogeneous.This approach is successfully applied for a mildly dipping reflector at the bottom of a layer with laterally varying medium parameters. With the exact V NMO assumed to be given, lateral inhomogeneity and anisotropy can be distinguished for such a situation. However, for another example with a homogeneous VTI layer overlying a curved reflector with dip up to 30°, there appears to be an ambiguity which can be understood by theoretical analysis. Consistently with existing theory using the NMO-ellipse, the presented approach is successfully applied to the latter example if V NMO in the strike direction is combined with residual moveout in dip direction.  相似文献   

7.
A conventional velocity-stack gather consists of constant-velocity CMP-stacked traces. It emphasizes the energy associated with the events that follow hyperbolic traveltime trajectories in the CMP gather. Amplitudes along a hyperbola on a CMP gather ideally map onto a point on a velocity-stack gather. Because a CMP gather only includes a cable-length portion of a hyperbolic traveltime trajectory, this mapping is not exact. The finite cable length, discrete sampling along the offset axis and the closeness of hyperbolic summation paths at near-offsets cause smearing of the stacked amplitudes along the velocity axis. Unless this smearing is removed, inverse mapping from velocity space (the plane of stacking velocity versus two-way zero-offset time) back to offset space (the plane of offset versus two-way traveltime) does not reproduce the amplitudes in the original CMP gather. The gather resulting from the inverse mapping can be considered as the model CMP gather that contains only the hyperbolic events from the actual CMP gather. A least-squares minimization of the energy contained in the difference between the actual CMP gather and the model CMP gather removes smearing of amplitudes on the velocity-stack gather and increases velocity resolution. A practical application of this procedure is in separation of multiples from primaries. A method is described to obtain proper velocity-stack gathers with reduced amplitude smearing. The method involves a t2-stretching in the offset space. This stretching maps reflection amplitudes along hyperbolic moveout curves to those along parabolic moveout curves. The CMP gather is Fourier transformed along the stretched axis. Each Fourier component is then used in the least-squares minimization to compute the corresponding Fourier component of the proper velocity-stack gather. Finally, inverse transforming and undoing the stretching yield the proper velocity-stack gather, which can then be inverse mapped back to the offset space. During this inverse mapping, multiples, primaries or all of the hyperbolic events can be modelled. An application of velocity-stack processing to multiple suppression is demonstrated with a field data example.  相似文献   

8.
A velocity model updating approach is developed based on moveout analysis of the diffraction curve of PS converted waves in prestack Kirchhoff time migration. The diffraction curve can be expressed as a product of two factors: one factor depending on the PS converted‐wave velocity only, and the other factor depending on all parameters. The velocity‐dependent factor represents the hyperbolic behaviour of the moveout and the other is a scale factor that represents the non‐hyperbolic behaviour of the moveout. This non‐hyperbolic behaviour of the moveout can be corrected in prestack Kirchhoff time migration to form an inverse normal‐moveout common‐image‐point gather in which only the hyperbolic moveout is retained. This hyperbolic moveout is the moveout that would be obtained in an isotropic equivalent medium. A hyperbolic velocity is then estimated from this gather by applying hyperbolic moveout analysis. Theoretical analysis shows that for any given initial velocity, the estimated hyperbolic velocity converges by an iterative procedure to the optimal velocity if the velocity ratio is optimal or to a value closer to the optimal velocity if the velocity ratio is not optimal. The velocity ratio (VP/VS) has little effect on the estimation of the velocity. Applying this technique to a synthetic seismic data set confirms the theoretical findings. This work provides a practical method to obtain the velocity model for prestack Kirchhoff time migration.  相似文献   

9.
Converted waves require special data processing as the wave paths are asymmetrical. The CMP concept is not applicable for converted PS waves, instead a sorting algorithm for a common conversion point (CCP) has to be applied. The coordinates of the conversion points in a single homogeneous layer can be calculated as a function of the offset, the reflector depth and the velocity ratio vP/ vs. For multilayered media, an approximation for the coordinates of the conversion points can be made. Numerical tests show that the traveltime of PS reflections can be approximated with sufficient accuracy for a certain offset range by a two-term series truncation. Therefore NMO corrections can be calculated by standard routines which use the hyperbolic approximation of the reflection traveltime curves. The CCP-stacking technique has been applied to field data which have been generated by three vertical vibrators. The in-line horizontal components have been recorded. The static corrections have been estimated from additional P- and SH-wave measurements for the source and geophone locations, respectively. The data quality has been improved by processes such as spectral balancing. A comparison with the stacked results of the corresponding P- and SH-wavefield surveys shows a good coherency of structural features in P-, SH- and PS-time sections.  相似文献   

10.
We study the azimuthally dependent hyperbolic moveout approximation for small angles (or offsets) for quasi‐compressional, quasi‐shear, and converted waves in one‐dimensional multi‐layer orthorhombic media. The vertical orthorhombic axis is the same for all layers, but the azimuthal orientation of the horizontal orthorhombic axes at each layer may be different. By starting with the known equation for normal moveout velocity with respect to the surface‐offset azimuth and applying our derived relationship between the surface‐offset azimuth and phase‐velocity azimuth, we obtain the normal moveout velocity versus the phase‐velocity azimuth. As the surface offset/azimuth moveout dependence is required for analysing azimuthally dependent moveout parameters directly from time‐domain rich azimuth gathers, our phase angle/azimuth formulas are required for analysing azimuthally dependent residual moveout along the migrated local‐angle‐domain common image gathers. The angle and azimuth parameters of the local‐angle‐domain gathers represent the opening angle between the incidence and reflection slowness vectors and the azimuth of the phase velocity ψphs at the image points in the specular direction. Our derivation of the effective velocity parameters for a multi‐layer structure is based on the fact that, for a one‐dimensional model assumption, the horizontal slowness and the azimuth of the phase velocity ψphs remain constant along the entire ray (wave) path. We introduce a special set of auxiliary parameters that allow us to establish equivalent effective model parameters in a simple summation manner. We then transform this set of parameters into three widely used effective parameters: fast and slow normal moveout velocities and azimuth of the slow one. For completeness, we show that these three effective normal moveout velocity parameters can be equivalently obtained in both surface‐offset azimuth and phase‐velocity azimuth domains.  相似文献   

11.
In 2005, a multicomponent ocean bottom node data set was collected by BP and BHP Billiton in the Atlantis field in the Gulf of Mexico. Our results are based on data from a few sparse nodes with millions of shots that were analysed as common receiver azimuthal gathers. A first‐order look at P‐wave arrivals on a common receiver gather at a constant offset reveals variation of P‐wave arrival time as a function of azimuth indicating the presence of azimuthal anisotropy at the top few layers. This prompted us to investigate shear arrivals on the horizontal component data. After preliminary processing, including a static correction, the data were optimally rotated to radial (R) and transverse (T) components. The R component shows azimuthal variation of traveltime indicating variation of velocity with azimuth; the corresponding T component shows azimuthal variation of amplitude and phase (polarity reversal). The observed shear‐wave (S‐wave) splitting, previously observed azimuthal P‐wave velocity variation and azimuthal P‐wave amplitude variation, all indicate the occurrence of anisotropy in the shallow (just below the seafloor) subsea sediment in the area. From the radial component azimuthal gather, we analysed the PP‐ and PS‐wave amplitude variation for the first few layers and determined corresponding anisotropy parameter and VP/VS values. Since fracture at this depth is not likely to occur, we attribute the observed azimuthal anisotropy to the presence of microcracks and grain boundary orientation due to stress. The evidence of anisotropy is ubiquitous in this data set and thus it argues strongly in favour of considering anisotropy in depth imaging for obtaining realistic subsurface images, at the least.  相似文献   

12.
三维三分量(3D3C)陆地反射PS转换波共中心点(CMP)叠加成像方法,虽然抽道集简单,但是对实际资料处理结果往往不理想.尤其当反射界面为三维倾斜界面时,其成像质量较差.本文提出有三个主要因素影响其成像质量:第一,转换点离散.运用实例计算得出,转换点离散度随着纵横波速度比、偏移距和界面倾角的增大而增大.相同界面倾角,不同测线方位的转换点离散度不同,视倾角的绝对值越大离散度也越大;第二,道集内静校正量差异增大.CMP道集中,由于转换点离散使得转换点横向跨度较大,经倾斜界面反射转换的S波出射到近地表地层时的角度差异也较大,导致静校突出;第三,加大动校叠加复杂性.三维倾斜界面PS波CMP道集近炮检距时距方程可表示为双曲形式,但是曲线的顶点位置和动校速度同时随测线方位变化,使得CMP道集同相轴很难校平,动校叠加过程很复杂.  相似文献   

13.
Converted-wave imaging in anisotropic media: theory and case studies   总被引:1,自引:0,他引:1  
Common‐conversion‐point binning associated with converted‐wave (C‐wave) processing complicates the task of parameter estimation, especially in anisotropic media. To overcome this problem, we derive new expressions for converted‐wave prestack time migration (PSTM) in anisotropic media and illustrate their applications using both 2D and 3D data examples. The converted‐wave kinematic response in inhomogeneous media with vertical transverse isotropy is separated into two parts: the response in horizontally layered vertical transverse isotrophy media and the response from a point‐scatterer. The former controls the stacking process and the latter controls the process of PSTM. The C‐wave traveltime in horizontally layered vertical transverse isotrophy media is determined by four parameters: the C‐wave stacking velocity VC2, the vertical and effective velocity ratios γ0 and γeff, and the C‐wave anisotropic parameter χeff. These four parameters are referred to as the C‐wave stacking velocity model. In contrast, the C‐wave diffraction time from a point‐scatterer is determined by five parameters: γ0, VP2, VS2, ηeff and ζeff, where ηeff and ζeff are, respectively, the P‐ and S‐wave anisotropic parameters, and VP2 and VS2 are the corresponding stacking velocities. VP2, VS2, ηeff and ζeff are referred to as the C‐wave PSTM velocity model. There is a one‐to‐one analytical link between the stacking velocity model and the PSTM velocity model. There is also a simple analytical link between the C‐wave stacking velocities VC2 and the migration velocity VCmig, which is in turn linked to VP2 and VS2. Based on the above, we have developed an interactive processing scheme to build the stacking and PSTM velocity models and to perform 2D and 3D C‐wave anisotropic PSTM. Real data applications show that the PSTM scheme substantially improves the quality of C‐wave imaging compared with the dip‐moveout scheme, and these improvements have been confirmed by drilling.  相似文献   

14.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

15.
The well‐known asymptotic fractional four‐parameter traveltime approximation and the five‐parameter generalised traveltime approximation in stratified multi‐layer transversely isotropic elastic media with a vertical axis of symmetry have been widely used for pure‐mode and converted waves. The first three parameters of these traveltime expansions are zero‐offset traveltime, normal moveout velocity, and quartic coefficient, ensuring high accuracy of traveltimes at short offsets. The additional parameter within the four‐parameter approximation is an effective horizontal velocity accounting for large offsets, which is important to avoid traveltime divergence at large offsets. The two additional parameters in the above‐mentioned five‐parameter approximation ensure higher accuracy up to a given large finite offset with an exact match at this offset. In this paper, we propose two alternative five‐parameter traveltime approximations, which can be considered extensions of the four‐parameter approximation and an alternative to the five‐parameter approximation previously mentioned. The first three short‐offset parameters are the same as before, but the two additional long‐offset parameters are different and have specific physical meaning. One of them describes the propagation in the high‐velocity layer of the overburden (nearly horizontal propagation in the case of very large offsets), and the other characterises the intercept time corresponding to the critical slowness that includes contributions of the lower velocity layers only. Unlike the above‐mentioned approximations, both of the proposed traveltime approximations converge to the theoretical (asymptotic) linear traveltime at the limit case of very large (“infinite”) offsets. Their accuracy for moderate to very large offsets, for quasi‐compressional waves, converted waves, and shear waves polarised in the horizontal plane, is extremely high in cases where the overburden model contains at least one layer with a dominant higher velocity compared with the other layers. We consider the implementation of the proposed traveltime approximations in all classes of problems in which the above‐mentioned approximations are used, such as reflection and diffraction analysis and imaging.  相似文献   

16.
三维倾斜界面PS转换波CMP道集时距及参数估计   总被引:1,自引:1,他引:0       下载免费PDF全文
在PS转换波资料处理过程中,往往需要联合P波资料提供相应的模型.在实际应用中存在P波和PS转换波层位对比困难.本文仅利用PS转换波数据,通过三维倾斜界面PS转换波CMP道集精确时距关系推导了近似时距解析表达式;分析了PS波的精确与近似时距关系随测线方位、界面倾角与倾向的变化规律及其拟合误差;并讨论了近似时距关系的三个时距参数随方位的变化特征;理论上给出描述时距的三维倾斜界面倾角、倾向、深度、纵波速度和横波速度这5个独立参数的估计方法,并通过理论模拟数据证明了该方法的可行性.  相似文献   

17.
The main objective of this work is to establish the applicability of shallow surface‐seismic traveltime tomography in basalt‐covered areas. A densely sampled ~1300‐m long surface seismic profile, acquired as part of the SeiFaBa project in 2003 ( Japsen et al. 2006 ) at Glyvursnes in the Faroe Islands, served as the basis to evaluate the performance of the tomographic method in basalt‐covered areas. The profile is centred at a ~700‐m deep well. VP, VS and density logs, a zero‐offset VSP, downhole‐geophone recordings and geological mapping in the area provided good means of control. The inversion was performed with facilities of the Wide Angle Reflection/Refraction Profiling program package ( Ditmar et al. 1999 ). We tested many inversion sequences while varying the inversion parameters. Modelled traveltimes were verified by full‐waveform modelling. Typically an inversion sequence consists in several iterations that proceed until a satisfactory solution is reached. However, in the present case with high velocity contrasts in the subsurface we obtained the best result with two iterations: first obtaining a smooth starting model with small traveltime residuals by inverting with a high smoothing constraint and then inverting with the lowest possible smoothing constraint to allow the inversion to have the full benefit of the traveltime residuals. The tomogram gives usable velocity information for the near‐surface geology in the area but fails to reproduce the expected velocity distribution of the layered basalt flows. Based on the analysis of the tomogram and geological mapping in the area, a model was defined that correctly models first arrivals from both surface seismic data and downhole‐geophone data.  相似文献   

18.
VTI介质P波非双曲时差分析   总被引:5,自引:3,他引:5       下载免费PDF全文
具有垂直对称轴的横向各向同性介质模型(VTI)是目前各向异性理论研究和多波多分量地震资料叠前成像处理中最常用的一种各向异性模型.VTI介质中反射 P波时距曲线一般不再是双曲线.基于不同的相速度近似公式会得到不同的时距关系式.文中对几种典型的非双曲时距曲线与射线追踪得到的准确时距曲线在不同各向异性强度下进行了对比,结果表明Muir等和Stovas等提出的非双曲时距公式由于过高地考虑了横波垂直速度的影响与精确的时距曲线有很大偏差;Tsvankin等提出的弱各向异性非双曲时距公式在ε-δ<0时误差增大;Alkhalifah等提出的非双曲时距公式在大炮检距任意各向异性强度下都具有较高的精度,适于在实际资料处理中应用.  相似文献   

19.
Elastic imaging from ocean bottom cable (OBC) data can be challenging because it requires the prior estimation of both compressional‐wave (P‐wave) and shear‐wave (S‐wave) velocity fields. Seismic interferometry is an attractive technique for processing OBC data because it performs model‐independent redatuming; retrieving ‘pseudo‐sources’ at positions of the receivers. The purpose of this study is to investigate multicomponent applications of interferometry for processing OBC data. This translates into using interferometry to retrieve pseudo‐source data on the sea‐bed not only for multiple suppression but for obtaining P‐, converted P to S‐wave (PS‐wave) and possibly pure mode S‐waves. We discuss scattering‐based, elastic interferometry with synthetic and field OBC datasets. Conventional and scattering‐based interferometry integrands computed from a synthetic are compared to show that the latter yields little anti‐causal response. A four‐component (4C) pseudo‐source response retrieves pure‐mode S‐reflections as well at P‐ and PS‐reflections. Pseudo‐source responses observed in OBC data are related to P‐wave conversions at the seabed rather than to true horizontal or vertical point forces. From a Gulf of Mexico OBC data set, diagonal components from a nine‐component pseudo‐source response demonstrate that the P‐wave to S‐wave velocity ratio (VP/VS) at the sea‐bed is an important factor in the conversion of P to S for obtaining the pure‐mode S‐wave reflections.  相似文献   

20.
We use residual moveouts measured along continuous full azimuth reflection angle gathers, in order to obtain effective horizontal transversely isotropic model parameters. The angle gathers are generated through a special angle domain imaging system, for a wide range of reflection angles and full range of phase velocity azimuths. The estimation of the effective model parameters is performed in two stages. First, the background horizontal transversely isotropic (HTI)/vertical transversely isotropic (VTI) layered model is used, along with the values of reflection angles, for converting the measured residual moveouts (or traveltime errors) into azimuthally dependent normal moveout (NMO) velocities. Then we apply a digital Fourier transform to convert the NMO velocities into azimuthal wavenumber domain, in order to obtain the effective HTI model parameters: vertical time, vertical compression velocity, Thomsen parameter delta and the azimuth of the medium axis of symmetry. The method also provides a reliability criterion of the HTI assumption. The criterion shows whether the medium possesses the HTI type of symmetry, or whether the azimuthal dependence of the residual traveltime indicates to a more complex azimuthal anisotropy. The effective model used in this approach is defined for a 1D structure with a set of HTI, VTI and isotropic layers (with at least one HTI layer). We describe and analyse the reduction of a multi‐layer structure into an equivalent effective HTI model. The equivalent model yields the same NMO velocity and the same offset azimuth on the Earth's surface as the original layered structure, for any azimuth of the phase velocity. The effective model approximates the kinematics of an HTI/VTI layered structure using only a few parameters. Under the hyperbolic approximation, the proposed effective model is exact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号