首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a geographic information systems-based multi-criteria site selection of non-hazardous regional landfill in Polog Region, Macedonia. The multi-criteria decision framework integrates legal requirements and physical constraints that relate to environmental and economic concerns and builds a hierarchy model for landfill suitability. The methodology is used for preliminary assessment of the most suitable landfill sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize criteria using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by environmental and economic decision criteria. The landfill suitability is achieved by applying weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. The results from the study suggested that a least suitable landfill area of 1.0% from the total is generated when environmental and economic objectives are valued equally while a most suitable landfill area of 1.8% area is generated when the economic objective is valued higher. Such results are aimed for enhancement of regional landfill site selection in the country that is compliant with modern EU standards.  相似文献   

2.
Qom is the eighth most populated city in center of Iran, and its population growth rate is among the highest in this country. Th presence of a Great Salt Lake, petroleum potential and tourism attractions in this city sheds light on the importance of how solid waste landfill locations should be disposed, located and managed as an environmental issue. Considering the key parameters in landfill site selection, in this study a series of location analysis have been conducted to locate optimum regions for municipal solid waste disposal, using analytical hierarchy process (AHP) and geographical information system (GIS). The main factors in selecting the suitable location for waste disposal include geomorphology–hydrography, environmental–social factors and design criteria, each of which are subdivided into several categories. Criteria are selected according to the regional condition; therefore, important factors such as distance from sea and forested areas were not considered. In the next step, digital layers are weighted and classified according to the available standards and expert judgment. Then, analytical multi-criteria decision-making algorithms as AHP and weighted linear combination are applied upon existing layers in GIS. The results show that by implementing the AHP method in this region only 7% of the study area has a very good and appropriate condition for landfill location and the field observation confirms them. Finally, considering the environmental effects of landfill, appropriate locations are suggested.  相似文献   

3.
In low-lying areas of urban and suburban regions in Asia, the use of landfill has allowed urban land use to encroach onto watery landforms, such as back marshes, which were formerly used as rice fields. To improve understanding of the associations between land-use patterns and landfill development, we carried out a case study in the urban fringe of Metro Manila in the Philippines. We examined landfill volume derived from land-use change using GIS, and field surveyed qualitative aspects of the landfill used. We calculated the rate of application of landfill in low-lying housing development areas to be 5.0 × 10m3 km?2 year?1, most of which consisted of offsite disposal of construction waste or crushed rock produced by urban development and renewal on the adjoining uplands. The flow of fill material from offsite sources to onsite landfill development areas was on the basis of individual agreements between suppliers and developers.  相似文献   

4.
MSW landfill site selection by combining AHP with GIS for Konya,Turkey   总被引:2,自引:2,他引:0  
Landfill site selection is a critical issue in the urban planning process because of its enormous impact on the economy, ecology, and the environmental health of the region. Landfill site selection process aims to locate the areas that will minimize hazards to the environment and public health. Multi-criteria evaluation methods are often used for different site selection studies. The purpose of this study was to determine suitable landfill site selection by using the geographical information system and the analytic hierarchy process in the study area. The final index model was grouped into four categories as “low suitable”, “moderate”, “suitable” and “best suitable” with an equal interval classification method. As a result, 12.69 % of the study area was low suitable, 7.27 % was moderately suitable, 13.79 % was suitable, and 15.52 % was the best suitable for landfilling; 50.72 % of the study area is not suitable for a landfilling.  相似文献   

5.
The city of Saqqez has a population of 140,000 people, making it one of the largest cities in Iran. Population growth, consumerism, and change in eating habits, such as the increased use of packaged products, is causing the accumulation of waste in this city to increase. In this study, the selection of a waste landfill site for Saqqez focused on 13 layers of geography information that was used by the IDRISI and Arc GIS software. Different models of the analytic multi-criteria decision-making process, such as an analytical hierarchy process (AHP), weighted linear combination (WLC), and Boolean logic, were used to manage layers to establish specific databases for urban waste landfills. Satellite images (Landsat ETM+ and SPOT 5), proposed sites and a land use map of the study area were also used. The results of this study indicated that two methods (AHP and WLC) in the early stages had better decision-making powers for locating landfill sites when compared to Boolean logic. Overlapping and compounding the similarities between these models in Arc GIS software, a 74-ha site was found. This site will be able to accept 130 tons of waste per day for the next 20 years.  相似文献   

6.
 In Germany, landfilling and incineration are the main techniques for the disposal of waste. However, due to humid climatic conditions, leakage of contaminated water from landfills into the subsurface poses a considerable threat to the environment. Therefore, the German states require high safety standards for the construction of a landfill. Emphasis is put on the presence of natural geological barrier rocks. Clay and silts, claystones and siltstones are best suited to meet the requirements defined in legal waste regulations. With regard to retardation capacity, thickness is considered of higher importance than hydraulic permeability. Suitable areas have to be reduced by legally excluded areas. A site search program in Lower Saxony revealed that only 1% of the total state area falls into the best suitability category. Geoscientific investigations on the remaining suitable areas have to become more detailed in the search progress. Geographical information systems (GIS) are the most adequate tools to work on all involved data and to present and outline the results. GIS make the results transparent and understandable to the public. These investigations are a necessary part of the environmental impact assessment which is obligatory for a landfill site's construction. Criteria catalogues take all important aspects of the search process into consideration and help to find the most suitable site. Received: 17 March 1997 · Accepted: 6 June 1997  相似文献   

7.
During the last decades, growth of urbanization and industrialization led to an increase in solid waste generation. Landfilling is the most prevalent ultimate disposal method for the municipal solid wastes in developing countries. The rapid municipal solid waste generation in Markazi province (central part of Iran) causes the need for precision in finding a suitable landfill site selection. In the present study, 12 factors (environmental and socioeconomic factors) have been applied to select the landfill site in Markazi province, Iran. The different methods including the analytic network process (ANP) combined with fuzzy linguistic quantifier, ordered weighted average (OWA), and weighted linear combination (WLC) approach in geographic information system was applied to find an appropriate landfill site. The OWA operator function permits the evaluation of the wide spectrum of consequences (with different scenario) obtained from different management strategies. Results revealed that integration of fuzzy logic, ANP, and OWA provides flexible and better ideas compared to the Boolean logic and WLC to select a suitable landfill site.  相似文献   

8.
This study presents a methodology for siting municipal solid waste landfills, coupling geographic information systems (GIS), fuzzy logic, and multicriteria evaluation techniques. Both exclusionary and non-exclusionary criteria are used. Factors, i.e., non-exclusionary criteria, are divided in two distinct groups which do not have the same level of trade off. The first group comprises factors related to the physical environment, which cannot be expressed in terms of monetary cost and, therefore, they do not easily trade off. The second group includes those factors related to human activities, i.e., socioeconomic factors, which can be expressed as financial cost, thus showing a high level of trade off. GIS are used for geographic data acquisition and processing. The analytical hierarchy process (AHP) is the multicriteria evaluation technique used, enhanced with fuzzy factor standardization. Besides assigning weights to factors through the AHP, control over the level of risk and trade off in the siting process is achieved through a second set of weights, i.e., order weights, applied to factors in each factor group, on a pixel-by-pixel basis, thus taking into account the local site characteristics. The method has been applied to Evros prefecture (NE Greece), an area of approximately 4,000 km2. The siting methodology results in two intermediate suitability maps, one related to environmental and the other to socioeconomic criteria. Combination of the two intermediate maps results in the final composite suitability map for landfill siting.  相似文献   

9.
The main objective of the study was to assess the integrated multiple hydrological hazards and their environmental and socio-economic risks in Himalaya through geographical information system (GIS) and database management system (DBMS). The Dabka Watershed constitutes a part of the Kosi Basin in the Kumaun Lesser Himalaya has been selected for the case illustration. The Dabka DBMS is constituted of three GIS modules, that is, geo-informatics, hydro-informatics and hazard-informatics. Through the integration and superimposing of these modules prepared Hydrological Hazard Index to identify the level of vulnerability for existing hydrological hazards and their socio-economic and environmental risks. The results suggested that geo-environmentally most stressed barren land areas have high rate of runoff, flood magnitude, erosion sediment load and denudation during rainy season particularly in the month of August (i.e., respectively, 84.56 l/s/km2, 871.80 l/s/km2, 78.60 t/km2 and 1.21 mm/year), which accelerates high hazards and their socio-economic and environmental risks, whereas geo-environmentally least stressed dense forest areas experience low rate of stream runoff, flood magnitude, erosion sediment load and denudation in the same season and month (i.e., respectively, 20.67 l/s/km2, 58.12 l/s/km2, 19.50 t/km2 and 0.20 mm/year) comparatively have low hazards and their socio-economic and environmental risks. The other frazzled geo-environment that also found highly vulnerable for natural hazards and their risks is agricultural land due to high stream runoff, flood magnitude, erosion sediment load and denudation rates (i.e., respectively, 53.15 l/s/km2, 217.95 l/s/km2, 90.00 t/km2 and .92 mm/year). This makes it necessary to take up an integrated and comprehensive sustainable land use policy for the entire Himalaya region based on the scientific interpretation of the crucial linkages between land use and hydrological hazards, that is, floods, erosion, landslides during rainy season and drought due to dry-up of natural springs and streams during summer season. The study would help the village, district and state development authority to formulate decision support system for alternate planning and management for the Himalaya region.  相似文献   

10.
Increase in waste generation calls for an effective waste management as this has become a necessity for environmental sustainability. Several methods are adopted in managing waste, which include waste reduction, reuse, thermal treatment, recycling and landfilling. The landfill method is recognised as the most used of all the waste management methods in developing countries such as Ghana. However, the selection of a suitable landfill site is very difficult and tedious. This is because it involves a consideration of many factors such as environmental, topographic, economic, socio-cultural and civil engineering. This research sought to identify a suitable landfill site by applying GIS multicriteria and weighted overlay approach in the Bongo District of Northern Ghana. The analysis relied on criteria and weights provided by the technocrats and the indigenes in the district as a way of demonstrating how landfill siting impasse can be resolved by incorporating the various stakeholders. The results obtained provided clear areas for landfill sites in the study area from the technocratic and the indigenous perspectives. However, the technocratic perspective failed to include an important cultural criterion, sacred groves, as a factor. The indigenous perspective also compromised on the factor related to nearness to residential areas, and is equally not sufficient on its own. The optimal landfill sites, which meets the expectations of both the technocrats and indigenes, was identified. This perspective has produced technically favourable and socio-culturally acceptable landfill site. However, it is recommended an environmental impact assessment (EIA) be conducted to identify the full environmental and social cost of the site. It is concluded that in landfill site selection much attention be given to cultural factors in the same way as the technical factors.  相似文献   

11.
This paper presents a GIS-based multi-criteria site selection for municipal solid waste landfilling in Ariana Region, Tunisia. Based on the regional characteristics, literature related to disposal sites and waste management, local expert, data availability and assessments via questionnaires, 15 constraints, and 5 factors were built in the hierarchical structure for landfill suitability by multi-criteria evaluation. The factors are divided into environmental and socio-economic groups. The methodology is used for preliminary assessment of the 20-year most useful lifetime suitable landfilling sites by combining fuzzy set theory, weighted linear combination (WLC) and analytic hierarchy process (AHP) in a GIS environment. The criteria standardization is undertaken by application of different fuzzy membership functions. The fuzzy membership functions shape and their control points are chosen through assessment of expert opinion. The weightings of each selection criterion are assigned depending on the relative importance using the AHP methodology. The WLC approach is applied for alternative landfill sites prioritization. The results of this study showed five potential candidate sites, which are generated when the environmental factors are valued higher than socio-economic factors. These sites are ranked in descending order using the ELECTRE III method. However, the final decision will require further detailed geotechnical and hydrogeological analyses toward the protection of groundwater as well as surface water.  相似文献   

12.
The disposal is the final step of any hazardous waste management plan. An inappropriate landfill site may have negative environmental, economical, and ecological impacts. Therefore, landfills should be sited carefully by taking into account various rules, regulations, factors, and constraints. In this study, candidate sites for hazardous landfills in the northeastern Khorasan Razavi province are determined using the integration of geographic information system and landfill susceptibility zonation methods. For this, the inappropriate areas were first removed from the model, and the suitability of remaining regions were evaluated using 15 different criteria in two steps. With this done, nine candidate sites were selected as the most suitable locations. Finally, the selected landfill sites were proposed based on environmental impact assessment (Leopold matrix) and economical studies. This study shows that Maasumabad, Kheirabad, Mayamey, and Yonsi are the best locations for the constitution of landfill in Khorasan Razavi province, respectively.  相似文献   

13.
The concept of groundwater recharge and quality improvement is often implemented in arid and semi-arid areas with depleted aquifers. Nalgonda district in Andhra Pradesh, India, has endemic fluoride, with concentrations in drinking water varying between 3 and 8?mg/l. Numerous techniques adopted in the recent past for defluoridizing groundwater proved to have limitations. The integrated approach of a geographic information system (GIS) and an analytic hierarchy process (AHP), to identify suitable sites for recharge structures over an area of ??115?km2, is highlighted. Further, to validate the delineated sites, a micro-watershed basin (2?km2) was selected for detailed recharge assessment and site feasibility studies through geophysical and tracer tests. Groundwater velocity (7?m/day) and flow direction through fractures in the shallow horizon were established through tracer experiments. The efficacy of the recommended recharge structures and their impact on groundwater quality were assessed over a period of 5?years, from 2002 to 2007, and the mean groundwater fluoride concentration of?>?3.5?mg/l over the study area was brought down to?<?1.5?mg/l.  相似文献   

14.
Designing environmentally safe and economically feasible landfills can be a challenging task due to complex interactions that need to be taken into account between landfill size, waste and site characteristics. The main focus of this study is, by interfacing the geographic information systems (GIS) with system simulation models (SSM), to develop a methodology and a landfill design component selection matrix that can enable the determination of landfill design components providing the desired performance with minimal design details. In this paper, the conceptual framework and applications of the developed methodology demonstrating the selection of landfill design components that are suitable for the existing site conditions are presented. The conceptual model defines design variables, performance criteria and design components of a landfill. GIS and SSM are used to handle the site-specific data and to evaluate the landfill performance, respectively. Results indicate that the landfills having the same design characteristics show different performance under different site conditions; therefore, a landfill design that is technically and economically feasible should be selected on the basis of performance.  相似文献   

15.
The selection of landfill sites for municipal solid waste (MSW) disposal involves consideration of geological, hydrological and environmental parameters which exhibit large spatial variability. Therefore, it is necessary to define, to what extent the chosen sites are reliable such that the probability of environmental pollution and health risks to population is minimal. In the present study, groundwater vulnerability to contamination has been assessed using the standard DRASTIC method. The results showed that the study region has 9.45% of very less, 32.94% of less, 25.47% of moderate, 22.79% of high and 9.35% of very high vulnerable zones. The study also revealed that none of the landfills are located in safe zones. This suggests that it requires proper remedial measures to avoid environmental pollution. A landfill site selection process has been carried out using the Analytical Hierarchy Process integrated with Geographical Information System tools. The obtained results showed that only 3.59?km2 (0.08%) of the total area is suitable for landfills. The reliability analysis of the site suitability revealed that landfills are located at unreliable locations where the probability of risk to environmental pollution is high. The presented approach assists decision-makers in selecting reliable locations for the safe disposal of MSW.  相似文献   

16.
The study of landfill sites is one of the most important studies in landfill engineering, and the landfill site selection involves combination of engineering, science, and politics. This paper describes a comprehensive hazardous waste landfill site selection methodology with the combined utilization of geographic information system and multiple criteria analysis methods, as applied to the Zanjan province in Iran. The six main data categories that were used are geological/engineering geological, geomorphological, hydrological/hydrogeological, climatological, pedological, and social/economical criteria, which included 31 input layers in total. A suitability map for hazardous waste landfilling was prepared for study area with five classes from most suitable to completely unsuitable. Finally, out of the three sites, one site was selected which was chosen by the local authorities. Our work offers a comprehensive methodology and provides essential support for decision-makers in the assessment of hazardous waste management problems in Zanjan province in I.R. Iran and other developing cities in other countries.  相似文献   

17.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

18.
Industrial sites are key factors in urban and regional land use planning. Therefore, determining the location of industrial areas is a critical and complex process for development and success. Industrial site selection aims in identifying the most suitable sites for industry creation, considering a set of influential criteria. Therefore, site selection generally and industrial site selection specifically can be categorised as a multi-criteria decision-making (MCDM) problem that requires detailed evaluation of various dimensions. This study developed a set of clusters containing 10 selection criteria for industrial site selection in Isfahan metropolitan area, Iran. The relationships between the criteria and clusters were modelled and analysed using analytical hierarchy process (AHP) and analytical network process (ANP). AHP and ANP agree in finding distance to water bodies and distance to other industries as the most and least important selection criteria. Four patches have been identified as suitable alternatives for industrial construction. While AHP found Borkhar Patch 1 as the most appropriate alternative, ANP demonstrated the superiority of Ardestan Patch over others. Conducting a sensitivity analysis for the models confirmed both models robustness in industrial site selection decisions.  相似文献   

19.
Remote sensing (RS) and geographic information systems (GIS) are very useful for environmental-related studies, particularly in the field of surface water studies such as monitoring of lakes. The Dead Sea is exposed to very high evaporating process with considerable scarcity of water sources, thus leading to a remarkable shrinkage in its water surface area. The lake suffers from dry out due to the negative balance of water cycle during the previous four decades. This paper discusses the application of RS, GIS, and Global Positioning System to estimate the lowering and the shrinkage of Dead Sea water surface over the period 1810–2005. A set of multi-temporal remote sensing images were collected and processed to show the lakes aerial extend shrinkage from 1973 up to 2004. Remote sensing data were used to extract spatial information and to compute the surface areas for Dead Sea for various years. The current study aims at estimating the fluctuation of Dead Sea level over the study period with special emphasis on the environmental impact assessment that includes the degradation level of the Dead Sea. The results indicated that there is a decrease of 20 m in the level of the Dead Sea that has occurred during the study period. Further, the results showed that the water surface area of the Dead Sea has shrunk from 934.26 km2 in 1973 to 640.62 km2 in 2004.  相似文献   

20.
The efficiency of GIS, RS and multi-criteria tools in isolating potential groundwater (GW) zones in the Kuttiyadi River basin (KRB), Kerala, has been robustly demonstrated by analysis of relevant data. To infer geohydrological makeup and consequent behavior of the KRB in respect of GW potential, firstly, various thematic layers viz. geomorphology, geology, slope, soil, lineament density and drainage density, were created. Secondly, thematic layers and their features were assigned suitable weights on the Saaty’s scale according to their relative significance for the presence and potential of GW. The assigned weights of the layers and their features were normalized using analytic network process method, and then the selected thematic maps were integrated in GIS using weighted overlay method to create the final groundwater prospect zone map. From the outcomes, the groundwater prospect zones of the KRB basin was found to be very good (166.21 km2), good (92.01 km2), moderate (180.33 km2), poor (237.25 km2), which constitute 24, 15, 26 and 35% of the study area, respectively. The GW prospect zone map was finally validated using geohydrology of area and GW level data from 43 phreatic wells in the study area. This study showed that groundwater prospect zone demarcation along with multi-criteria decision making is a powerful tool for proper utilization, planning and management of the precious groundwater resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号