首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Geological, petrological and structural observations were obtained along a 30-km-long traverse across a segment of the Valle Fértil shear zone, central-western Argentina. On a regional scale, the shear zone appears as numerous discontinues belts over 25 km in width and is approximately 140 km in length, extended on the western section of the Sierras Valle Fértil – La Huerta mountain range. The steeply dipping shear zone with a vertical mylonitic lineation is composed of amphibolite facies ribbon mylonites and amphibolite to greenschist facies ultramylonites derived from Early Ordovician plutonic and metasedimentary parent rocks. Locally, syn-kinematic retrogression of mylonites formed greenschist facies phyllonites. During the later stages of deformation, unstrained parent rocks, mylonites, ultramylonites and phyllonites were affected by pervasive cataclasis under low greenschist facies conditions associated with localized faulting. One new 40Ar/39Ar age on biotite and published 40Ar/39Ar ages on amphibole in the shear zone yield an average cooling rate of 6.2 °C/Ma for a time period that crosses the Silurian–Devonian boundary. Since in metasedimentary rocks the youngest zircon's rims dated at 465 Ma marks the beginning of cooling, nearly continuous uplift of rocks within the shear zone occurred over a minimum time span of 55 Ma. During the period of active deformation, dip-slip movement can explain uplift of several kilometers of the Early Ordovician arc crust. The Valle Fértil shear zone, which was formed near above the inferred suture zone between the Famatinian arc and Cuyania microcontinent, is a major structural boundary nucleated within the Early Ordovician crust. The simplest geodynamic model to explain the evolution of the Valle Fértil shear zone involves the collision of the composite Cuyania/Precodillera microcontinent against the Famatinian arc.  相似文献   

2.
In the East Karkonosze complex (Karkonosze = Riesengebirge), which occurs at the northern margin of the Bohemian massif, rocks of the glaucophane-schist facies and transitions between the glaucophane-schist facies, greenschist facies and epidote-amphibolite facies are present. They belong to the Leszczyniec Volcanic Formation (LVF) of Cambrian/Ordovician age and to the mainly metasedimentary Czarnów Schist Formation (CSF) of Ordovician/Silurian age. Similar high-pressure, low-temperature rocks occur in the southern Karkonosze and in the Kaczawa Mountains within metavolcanic formations of approximately the same age. Petrographic and electron probe studies show complex relationships between minerals including chemical zoning. In the East Karkonosze three stages of metamorphism pre-dating contact metamorphism by late Variscan (lowermost Upper Carboniferous) granite intrusion were distinguished [stage 1: ocean floor, amphibolite facies (observed only in part of the LVF); stage 2: high-pressure, low-temperature, variably glaucophane-schist facies, high-pressure greenschist facies and epidote-amphibolite facies; stage 3: medium-pressure greenschist facies accompanied by strong deformations]. Glaucophane-schist facies rocks formed in stage 2 survived the later stages of metamorphism only in the southern part of East Karkonosze, i. e. in Lasocki Range and Rýchory. Using the Maruyama et al. (1986) geobarometer the glaucophane-bearing rocks formed at 6.5–7 Kb, those with crossite at 5–6 Kb and rocks with magnesioriebeckite/riebeckite at 4–5 Kb. Other estimates for glaucophane-bearing rocks give somewhat higher values of pressure, i. e. 7–12 Kb at temperatures between 300 and 530°C. The highest temperatures are recorded in the glaucophane- and garnet-bearing rocks. Stilpnomelane may occur in all of these rocks. The subduction/obduction episode responsible for this high-pressure, low-temperature metamorphism is considered to have taken place in the early Variscan, although no geochronology is yet available to confirm this.  相似文献   

3.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

4.
New data suggest syn-convergent extrusion and polyphase tectonics followed by late Variscan extension in the Strudengau area of the southern Moldanubian zone in Austria. The tectonic history can be summarized as follows: (1) The oldest ductile event is observed in HT/LP metamorphic pelitic gneisses, which preserve E-dipping foliation planes (D1-fabric) with NW–SE-trending lineations. (2) The overlying gneisses record HT/HP conditions with decompression-induced anatexis in the central part of the domain. These gneisses exhibit N–S trending, horizontal lineations along steep-dipping foliation planes (D2-fabric) crosscutting the D1-fabric of the pelitic gneisses. Along the margin, these rocks have been strongly mylonitized under amphibolite facies conditions (D2). D2 is interpreted as a significant vertical shear zone, which juxtaposes the HT/LP rocks against the orogenic lower crust. (3) Lastly, the whole area is overprinted by localized shear zones (D3-fabric) with top-to-the-NW kinematics. This newly discovered Strudengau shearing event is associated with isoclinal folding that possesses axial planes parallel to the mylonitic foliation and fold axes parallel to the stretching lineations. Initial mylonitization occurred under greenschist facies, representing the latest ductile event of the Strudengau area. The new geochronological data presented here indicate a narrow time frame (c. 323–318 Ma) for the D3 deformation. Therefore, this event is contemporaneous with the intrusion of the granites of the South Bohemian Batholith (330–310 Ma). The nearby South Bohemian Batholith and generally steep dyke swarms in the Strudengau area and to the north trend in a NE–SW preferred orientation, interpreted to be D3-synkinematic magmatism. In a regional context, the NW–SE stretching during D3 together with the synkinematic intrusion of dykes is associated with late orogenic extension in the Austrian Moldanubian Zone. Kinematic data of brittle normal faults and tension gashes are consistent with NW–SE-oriented extension under cooler conditions.  相似文献   

5.
The present comment disproves the tectonic model of a late Devonian/early Carboniferous Tibetan-style collisional plateau in the Teplá-Barrandean (TB) part of the Bohemian Massif, which later collapsed by thermal weakening of the underlying crust. Contrary to this model, the TB neither reveals major crustal thickening nor uplift and erosion, and eastern continuations of the TB were, during the relevant time-span, areas of open marine sedimentation. Late Devonian/early Carboniferous marine sediments widespread also in the Armorican and Central Massifs of France testify to low topography in central parts of the Variscan orogen. Notional traces of a Permo-Carboniferous ice cap on the French Massif Central do not support the plateau model, because they are questionable and much younger than the inferred plateau stage of the TB. The relative uplift of high-grade metamorphic rocks to the NW and the SE of the TB is not due to sinking of an elevated TB, but, instead, to the hydraulic and buoyant expulsion of HP material from the Saxo-Thuringian and Moldanubian subduction channels. The rise of lower-grade HT rocks along the southwestern margin of the Bohemian Massif was effected by late Carboniferous transpression. The high temperature and the resulting low viscosity of the rising materials were probably not caused by Variscan mantle delamination, but relate to lithospheric thinning and heating at the tip of the westward propagating Tethys Rift.  相似文献   

6.
A structural, petrological and geochronological (U‐Th‐Pb of zircon and monazite) study reveals that the lower crust sequences of the Variscan high‐grade basement cropping out between Solenzara and Porto Vecchio, south‐east Corsica (France) have been tectonically juxtaposed along with middle crustal rocks during the extrusion of the orogenic root of the Variscan chain. We propose that a system of high‐temperature, orogen‐parallel shear zones that developed under a transpressive dextral tectonic regime caused the exhumation of the entire sequence. This tectonic complex is thus made up of rocks having undergone different P–T conditions (eclogite‐?, high‐pressure granulite facies and amphibolite facies) at different times, reflecting the progressive foreland migration of the orogenic front. The Solenzara granulites were derived from burial of continental crust to high‐pressure (1.8–1.4 GPa) and high‐ to ultrahigh‐temperature conditions (900–1000 °C) during the Variscan convergence: U–Pb ELA‐ICPMS zircon dating constrained the timing of this metamorphism at c. 360 Ma. The gneisses cropping out at Porto Vecchio are middle crustal‐level rocks that reached their peak temperature conditions (700–750 °C at <1.0 GPa) at c. 340 Ma. The diachronism of the metamorphic events, the foliation patterns and their geometry suggest that the granulites were exhumed to middle crustal levels through channel flow tectonics under continuous compression. The amphibolite facies gneisses of Porto Vecchio and the granulites of Solenzara were accreted through the development of a major dextral mylonitic zone forming under amphibolite facies conditions: in situ monazite isotope dating (ELA‐ICPMS) revealed that this deformation occurred at c. 320 Ma and was accompanied by the emplacement of syntectonic high‐K melts. A final HTLP static overprint, constrained at 312–308 Ma by monazite U‐Th‐Pb isotope dating, is related to the emplacement of the igneous products of the Sardinia‐Corsica batholith and marks the transition from the Variscan orogenic event to the Permian extension.  相似文献   

7.
The Schwarzwald is part of the central polymetamorphic crystalline belt of the Variscan Orogen (»Moldanubian Belt«). From north to south it consists of four terranes: the metasedimentary Zone of Baden-Baden, the polymetamorphic Central Schwarzwald Gneiss Complex, the sedimentary — metamorphic Zone of Badenweiler-Lenzkirch, and the Hotzenwald Complex. The largest of these terranes is the Central Schwarzwald Gneiss Complex (CSGC) whose rocks record a history of protracted regional metamorphism and anatectic melt generation. During Variscan convergence between 350 and 325 Ma the CSGC became detached from a high-temperature lower crustal substratum and was emplaced southeastward over Paleozoic clastics, volcanic rocks and crystalline slivers of the Zone of Badenweiler-Lenzkirch and the Hotzenwald Complex. Kinematic indicators suggest that these early convergent movements on retrograde shear zones and the concomitant crustal thickening were superseded by movements on divergent shear zones. The ascent of voluminous granitic plutons from a mid-crustal zone of melt generation into the upper crust was probably triggered by a change in the crustal kinematics from overall convergence to overall divergence at about 325 Ma. In detail this process was probably diachronous. Detachment of upper crust and large scale melt generation in the middle crust of the Schwarzwald was probably facilitated by the tectonic stacking of water-rich pelitic clastics and gneiss slivers, with relatively even proportions of crystalline and pelitic materials.  相似文献   

8.
Based upon the knowledge of the field relations the mineral assemblages of the various metamorphic rocks of the area are plotted in AKF-diagrams with the aim at determining possible mutual reaction relationships. For the eastern part a continuous metamorphic transition follows, starting with mica schists of the Lower Palaeozoic Saxothuringicum as characterized by the assemblage biotite-muscovite- and alusite through a series of biotite-sillimanite-gneisses with garnet of K feldspar into the high-grade gneisses and migmatites of the Moldanubicum as typified by cordierite-sillimanite-K feldspar parageneses. Hence the age of this metamorphism common to all units is probably early Variscan (= Hercynian). In the western part the Moldanubian unit, in particular, was affected by wide-spread later diaphthoresis creating mineral assemblages like chlorite-biotite-muscovite and chlorite-phengitic white mica, that represent a lower facies than that of the neighbouring mica schists. This diapthoresis is also of Hercynian age, because it is followed by the intrusion of igneous rocks probably during Sudetic (= Middle Carboniferous) times.  相似文献   

9.
张寿广 《地球学报》1987,9(2):27-39
本文对中国早前寒武纪太古期、早元古期、中晚元古期的变质作用的分布、岩石类型、变质相特点、变质相划分及同位素年龄数据等进行了论述。将中国前寒武纪地壳划分为华北、西北、华南、西南四个变质区、各变质区有自己的不同特点和演化历史。前寒武纪地壳演化是陆壳增长的历史,区域高温和中温变质作用是太古代原始地壳特有的变质作用。  相似文献   

10.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

11.
郯庐断裂带中-南段走滑构造特征与变形规律   总被引:36,自引:13,他引:23       下载免费PDF全文
朱光  徐佑德  刘国生  王勇生  谢成龙 《地质科学》2006,41(2):226-241,255
在大别造山带东端和苏鲁造山带西端,郯庐断裂带存在着同造山期和早白垩世两期左旋走滑韧性剪切带,在张八岭隆起南段迄今为止只发现了早白垩世的走滑剪切带。这些剪切带由若干条小型韧性剪切带组成,带内糜棱岩都具有陡倾的糜棱面理和平缓的矿物拉伸线理。野外构造、显微构造及石英C轴组构皆指示了左旋走滑剪切指向。新生矿物组合和矿物变形行为分析显示大别山东端郯庐早、晚两期剪切带主要形成于中绿片岩相的变质温度环境,张八岭隆起南段剪切带主要形成于高绿片岩相的变质温度环境,苏鲁造山带西端郯庐早、晚两期剪切带则形成于高角闪岩相的变质温度环境。糜棱岩内基质中新生白云母的电子探针分析指示大别山东端和张八岭隆起南段出露的郯庐韧性剪切带形成于低压环境下,而苏鲁造山带西端的郯庐韧性剪切带形成于高压榴辉岩相环境。这些详细的构造研究显示:在华北与华南板块的碰撞造山期郯庐断裂带以左旋走滑构造型式存在,而在早白垩世太平洋构造域中它又再次发生了强烈的左行平移。  相似文献   

12.
The Rand Granite is a heterogeneous metamorphosed granitoid rock complex with numerous wallrock inclusions situated in the Moldanubian Zone at the southern margin of the Central Schwarzwald Gneiss Complex. It is a largely mylonitized elongated body and is thrust over the Badenweiler-Lenzkirch Zone forming a nappe with shear zones along its northern and southern boundaries. It comprises meta-granites, meta-trondhjemites and biotite augen gneisses derived from monzogranites to granodiorites. Mineral behaviour indicates that the magmatic body has been deformed under upper greenschist facies conditions. Nappe thrusting, which also affected the South Schwarzwald Gneiss Complex, occurred in Visean time during high-temperature / low-pressure metamorphism. Kinematic indicators in the mylonites document E- to ESE-directed nappe transport, highly transpressive relative to the trend of the nappe boundaries and the foliation. The trondhjemites formed at 351 +5/-4 Ma, predating the Variscan HT metamorphism. They have initial Nd-values of +6.6 to +6.7 and relatively low initial 87Sr/86Sr ratios (0.7042 to 0.7063), indicating a predominant mantle origin. The granites and protoliths of the biotite augen gneisses probably crystallised between 436 and 377 Ma, suggested by U-Pb zircon model ages. They are different from the trondhjemites with low initial Nd-values (–4.7 to –3.3) and higher initial 87Sr/86Sr ratios (0.7068–0.7077), indicating that large part of the Rand Granite originated from anatexis of continental crust. Internal structure of zircons from the Rand Granite reveals mixing of magmas derived from both mantle and crust sources. These new data support an interpretation that the Rand Granite developed along an active continental margin and therefore represents a possible root of a Variscan magmatic arc.  相似文献   

13.
郯庐剪切带的性质和意义   总被引:11,自引:0,他引:11  
沿郯庐断裂带从大别山东麓经山东中部至辽北吉南的新宾—桦甸地区,暴露的早前寒武纪结晶岩石中存在着一系列北北东走向的大型韧性剪切带,其最大宽度达20km,走向断续延伸近2000km,它们分别在大别、鲁西和新宾地区形成了巨大的弧形牵引构造。剪切带中不同尺度组构要素的几何学,指示其中曾经发生了一致的大幅度左行位移;变形岩石的显微构造和矿物组合特征,说明这一韧性剪切带早期形成于低角闪岩相条件下,并且在抬升和冷却过程中经历了绿片岩相条件下的递进变形。山东中部晚元古代以后的沉积不整合于韧性剪切带及其变形岩石之上,中生代未期脆性的郯庐断裂系统追踪并改造了基底岩石中的韧性剪切带。  相似文献   

14.
Continental margin sediments of an exotic nature, which have been thrust over the Rhenohercynian zone of Central Germany, occur mainly in olistostromes of Lower Carboniferous age. A stratigraphy compiled from the exotic rocks reflects the wide spectrum of continental shelf and adjacent basinal facies that existed at least from the Early Ordovician to the Early Carboniferous. Facies and faunal relationships are comparable with those in the Palaeozoic of the western Mediterranean region, Saxothuringia (south-east Germany) and the Barrandian area (Czech Republic), which suggests deposition at the northern margin of the Gondwana Palaeozoic supercontinent. Among the exotic rocks, a Middle Devonian to Early Carboniferous facies, referred to as Flinzkalk, contains sediments showing characteristics of contourites. They may have originated from reworked turbidites, formed under a current which flowed parallel to the North Gondwana margin, similar to the Gulf Stream flowing along eastern North America today.  相似文献   

15.
Abstract

Four ductile shear zones were sampled in the autochthonous Thaya basement and the Upper Bíte? nappe (Moravian unit) at the Eastern margin of the Bohemian massif. In both studied units, the tectono-metamorphic evolution and the chemical mass transfer are different. Two deformational events are recognised: the first deformation stage under amphibolite facies conditions is overprinted by a second event under greenschist facies conditions.

The first deformation affected the western margin of the Thaya basement and the whole Bíte? nappe: microstructures are characterised by dynamic recrystallisation of feldspars and quartz, and occurrence of myrmekites and grain-boundary migration of quartz. None or weak chemical mass transfer is related to this medium to high temperature deformation. This deformation corresponds to the thrusting of Moldanubdian units on the Brunovistulian units (Moravian nappes and autochthonous Thaya basement).

The second deformation generated shear zones in the until then preserved Thaya basement and reactivated both shear zones of the western margin of the Thaya basement and those of the Bíte? nappe. This deformation is retrograde and mainly associated with chemical mass transfer: a decrease of CaO, FeO, FeO/Fe2O3 and an increase of MgO, K2O and H2O. These chemical changes are related to greenschist metamorphic reactions leading to the destabilisation of feldspars and the crystallisation of white micas and Ca-silicates. The large chemical mass transfer is associated with the circulation of a large volume of fluids. A model of progressive fluid circulation correlated with Variscan prograde and retrograde metamorphism during the collision of Moldanubian and Brunovistulian units is proposed.  相似文献   

16.
In the Ligurian Alps, the Barbassiria massif (a Variscan basement unit of the Briançonnais domain) is made up of orthogneisses derived from K‐rich rhyolite protoliths and minor rhyolite dykes. However, on account of subsequent Alpine deformation and a related blueschist facies metamorphic overprint that are pervasive within the Barbassiria Orthogneisses, little evidence of the earlier Variscan metamorphism is preserved. In this study, new U–Pb laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircon from the Barbassiria Orthogneisses and dykes was undertaken to unravel the relationships between protolith magmatism and the Variscan metamorphic overprint. The results suggest a protolith age for the Barbassiria Orthogneisses of ~315–320 Ma (i.e., Early/Late Carboniferous), and constrain the age of a subsequent rhyolite dyke emplacement event to 260.2 ± 3.1 Ma (i.e., Late Permian). The Variscan high‐temperature (greenschist–amphibolite facies) metamorphic event that affected the Barbassiria Orthogneisses was likely associated with both tectonic burial and compression during the final stages of the Variscan collision during the Late Carboniferous period. Emplacement of late‐stage rhyolite dykes that cut the Barbassiria Orthogneisses is linked to a diffuse episode of Late Permian rhyolite volcanism that is commonly observed in the Ligurian Alps. The age of this dyke emplacement event followed a ~10–15 Ma Mid‐Permian gap in the volcano‐sedimentary cover sequence of the Ligurian Alps, and represents the post‐orogenic stage in this segment of the Variscides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Several small outcrops along the western Rhinegraben escarpment expose rocks which represent the western prolongation of the so-called Mid-German Crystalline Rise. This basement ridge separates the Rhenohercynian and Saxothuringian zones of the Variscan belt of Europe and thus marks the boundary between the external and the internal zones. The variable rock association includes an orthogneissamphibolite complex, weakly deformed low grade sediments (?Devonian and Visean), and a number of different syn- to post-orogenic granodioritic to granitic intrusives, all crosscut by Late Lower Carboniferous undeformed lamprophyric dikes and unconformable overlain by Permian sediments and volcanics. Largely isothermal decompression during coaxial fabric evolution in the orthogneiss complex marks an early stage of deformation possibly due to crustal attenuation. Peak metamorphism (amphibolite/greenschist facies) in the other sequences with only minor orogenic shortening is succeeded by retrogressive strike-slip deformation associated to peak intrusive activity. The encountered typically low-P high-T metamorphism, the predominant strike-slip type kinematic pattern, and the preservation of parts of the Devono-Carboniferous sedimentary cover of the Rise preclude major crustal thickening and subsequent exhumation. An exception is the probably thrust-bounded juxtaposition of the Albersweiler orthogneisses and Burrweiler schists which is supported by their respective PT-paths. The orogenic imprint in the sedimentary cover of the crystalline rise appears to be thermal rather than strain-induced, suggesting a dominant role of the abundant pre- to late-orogenic intrusives. The essential aspects of this sequence of related structural and thermal events as well as the rock type association suggest a largely submarine incipient magmatic arc type of orogenic environment for this part of the Variscan belt. Its evolution probably started during the Upper Devonian on a disintegrating continental platform and proceeded through the Lower Carboniferous continental collision with the Rhenohercynian zone entailing a concomittant switch in deformation mode of the upper plate.  相似文献   

18.
In the nappe zone of the Sardinian Variscan chain, the deformation and metamorphic grade increase throughout the tectonic nappe stack from lower greenschist to upper amphibolite facies conditions in the deepest nappe, the Monte Grighini Unit. A synthesis of petrological, structural and radiometric data is presented that allows us to constrain the thermal and mechanical evolution of this unit. Carboniferous subduction under a low geothermal gradient (~490–570 °C GPa?1) was followed by exhumation accompanied by heating and Late Carboniferous magma emplacement at a high apparent geothermal gradient (~1200–1450 °C GPa?1). Exhumation coeval with nappe stacking was closely followed by activity on a ductile strike‐slip shear zone that accommodated magma intrusion and enabled the final exhumation of the Monte Grighini Unit to upper crustal levels. The reconstructed thermo‐mechanical evolution allows a more complete understanding of the Variscan orogenic wedge in central Sardinia. As a result we are able to confirm a diachronous evolution of metamorphic and tectonic events from the inner axial zone to the outer nappe zone, with the Late Variscan low‐P/high‐T metamorphism and crustal anatexis as a common feature across the Sardinian portion of the Variscan orogen.  相似文献   

19.
Corona and inclusion textures of a metatroctolite at the contact between felsic granulite and migmatites of the Gföhl Unit from the Moldanubian Zone provide evidence of the magmatic and metamorphic evolution of the rocks. Numerous diopside inclusions (1–10 μm, maximum 20 μm in size) in plagioclase of anorthite composition represent primary magmatic textures. Triple junctions between the plagioclase grains in the matrix are occupied by amphibole, probably pseudomorphs after clinopyroxene. The coronae consist of a core of orthopyroxene, with two or three zones (layers); the innermost is characterized by calcic amphibole with minor spinel and relicts of clinopyroxene, the next zone consists of symplectite of amphibole with spinel, sapphirine and accessory corundum, and the outermost is formed by garnet and amphibole with relicts of spinel. The orthopyroxene forms a monomineralic aggregate that may contain a cluster of serpentine in the core, suggesting its formation after olivine. Based on mineral textures and thermobarometric calculations, the troctolite crystallized in the middle to lower crust and the coronae were formed during three different metamorphic stages. The first stage relates to a subsolidus reaction between olivine and anorthite to form orthopyroxene. The second stage involving amphibole formation suggests the presence of a fluid that resulted in the replacement of igneous orthopyroxene and governed the reaction orthopyroxene + anorthite = amphibole + spinel. The last stage of corona formation with amphibole + spinel + sapphirine indicates granulite facies conditions. Garnet enclosing spinel, and its occurrence along the rim of the coronae in contact with anorthite, suggests that its formation occurred either during cooling or both cooling and compression but still at granulite facies conditions. The zircon U–Pb data indicate Variscan ages for both the troctolite crystallization (c. 360 Ma) and corona formation during granulite facies metamorphism (c. 340 Ma) in the Gföhl Unit. The intrusion of troctolite and other Variscan mafic and ultramafic rocks is interpreted as a potential heat source for amphibolite–granulite facies metamorphism that led to partial re‐equilibration of earlier high‐ to ultrahigh‐P metamorphic rocks in the Moldanubian Zone. These petrological and geochronological data constrain the formation of HP–UHP rocks and arc‐related plutonic complex to westward subduction of the Moldanubian plate during the Variscan orogeny. After exhumation to lower and/or middle crust, the HP–UHP rocks underwent heating due to intrusion of mafic and ultramafic magma that was generated by slab breakoff and mantle upwelling.  相似文献   

20.
豫南熊店高压变质岩块体经历了6期变形和变质作用,即从深地壳层次挤压缩短体制下的不均匀韧性剪切、榴辉岩进变质作用,到中地壳层次挤压体制下的逆冲推覆、钠长绿帘角闪岩相退变质作用,到地壳浅层伸展体制下的脆性—韧性滑脱、绿片岩相变质作用,以及更浅层次的脆性变形,动力变质作用。高压变质岩的形成与向地壳中、浅层次的大幅度抬升均是在挤压机制下韧性变形作用的结果,而高压变质岩暴露到地表是伸展滑脱、断块升降和差异抬升所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号