首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
— The effects of interfaces and velocity gradients on wide-angle seismic attributes are investigated using synthetic seismograms. The seismic attributes considered include envelope amplitude, pulse instantaneous frequency, and arrival time of selected phases. For models with interfaces and homogeneous layers, head waves can propagate which have lower amplitudes, as well as frequency content, compared to the direct arrivals. For media with interfaces and velocity gradients, higher amplitude diving waves and interference waves can also occur. The Gaussian beam and reflectivity methods are used to compute synthetic seismograms for simple models with interfaces and gradients. From the results of these methods, seismic attributes are obtained and compared. It was found that both methods were able to simulate wide-angle seismic attributes for the simple models considered. The advantage of using the Gaussian beam method for seismic modeling and inversion is that it is fast and also asymptotically valid for laterally varying media.  相似文献   

2.
1958年6月开始,在柴达木盆地进行低頻折射地震的試驗工作,目的在于探測埋藏很深的基岩,以及基岩以上的主要沉积岩界面。根据地貭資料的推測,盆地中部基岩埋藏的深度可达10公里以上,利用其他的地震勘探方法是不容易得到效果的.所用检波器的固有頻率为13周/秒,最远两个相遇炮点相距約90公里,接收距离达100公里.关于仪器的性能与工作方法,已在前文叙述,对于低頻地震波性貭的研究,仅有簡短的报导.  相似文献   

3.
针对鄂尔多斯盆地西缘黄土塬区复杂地表和复杂地下构造导致难以准确成像问题,采用浅层潜水波层析反演(DWT)速度建模技术,同时辅以中深层反射波层析成像技术,形成一套实用叠前深度偏移速度建模方法。首先生成一个基于钻井和解释信息的起始近地表速度,其次利用潜水波层析反演建立初始近地表模型,将其与常规处理获得的中深层速度模型进行匹配拼接,建立起初始的起伏地表全速度模型,然后在此基础上利用基于反射波的网格层析进行中深层速度建模,经过多轮次迭代,最终获得可靠的高精度速度模型。鄂尔多斯盆地西缘MJT工区地震资料的成像处理验证了这一套速度建模技术的有效性,地下构造成像更合理也更精确。   相似文献   

4.
库车坳陷复杂高陡构造地震成像研究   总被引:2,自引:1,他引:1       下载免费PDF全文
复杂构造地震成像主要取决于叠前地震数据品质、偏移速度可靠性和偏移算子成像精度. 库车坳陷异常复杂的近地表条件导致极低信噪比的地震采集数据. 该区逆冲推覆高陡构造刺穿盐体大面积分布, 盐层厚度变化大、顶底面形态复杂, 盐下断裂带破碎、小断块发育, 形成异常复杂的地震成像问题. 本文重点研究三个关键环节:(1)精细的叠前地震预处理研究: 根据该区地震地质复杂性和地震资料特征, 采用一些新的方法技术和技术组合从振幅与时移的大、中、小尺度变化三个层次来解决资料信噪比问题, 重建深部反射信号; (2)三级偏移速度分析研究:利用库车坳陷盐刺穿逆冲推覆构造建模理论及变速成图配套技术解决叠前时间偏移速度场时深转换问题,利用井约束低频速度地震迭代反演技术解决连井层速度场与偏移速度场的融合问题,实现从DMO速度分析、叠前时间偏移速度分析到叠前深度偏移速度分析的有机衔接,建立拓扑结构相对保持的叠前深度偏移速度模型;(3)基于退化Fourier偏移算子的半解析波动方程叠前时间和深度偏移研究, 极大地改善了地震偏移过程中高波数波的成像问题. 通过对库车坳陷大北、博孜、却勒、西秋4和西秋10等复杂高陡构造的叠前时间和深度偏移地震成像处理,取得了较好的应用效果.  相似文献   

5.
A 400 km-long wide-angle seismic experiment along Lianxian-Gangkou profile in South China was carried out to study contact relationship between southeast continental margin of Yangtze block and northwest continental margin of Cathaysia block. We reconstructed crustal wide-angle reflection structure by the depth-domain pre-stack migration and the crustal velocity model constructed from the traveltime fitting. The wide-angle reflection section shows different reflection (from crystalline basement and Moho) pattern beneath the Yangtze and Cathaysia blocks, and suggests the Wuchuan-Sihui fault is the boundary between them. A cluster of well-developed reflections on Moho and in its underlying topmost mantle probably comes from alternative thin layers, which may be seismic signature of strong interaction between crust and mantle in the tectonic environment of lithosphere extension.  相似文献   

6.
The main results of deep seismic sounding (DSS) are usually presented in the form of high-velocity models of the medium. Some model examples and the international DOBRE profile have shown that the informativeness of the data obtained can be significantly enhanced by the construction of wave images of the Earth’s crust, based on the migration of refracted and wide-angle reflected waves. The Donets Basin Refraction/Reflection Experiment (DOBRE) profile crosses the Dnieper-Donets paleorift zone in the Donbas region. Along the profile, refracted waves from the basement and the upper mantle and the reflections from the crust basement (the M boundary) are reliably traced. This wave migration has been used to construct a wave image of the structure of the Earth’s crust. As a result, a clear seismic image of the basement surface, whose depth changes along the profile from 0 to 20 km, was obtained. In near-slope parts of the basin, several major faults were identified that had not been identified previously during standard kinematic data processing. It is shown that the crust-upper mantle transition zone is a clearly reflective horizon only within the crystalline massifs; under a depression, it is represented by a lens-shaped highly-heterogeneous area. As shown in the model examples, the images obtained using such a migration accurately reflect the structural features of the medium, in spite of its complicated structure.  相似文献   

7.
The 2-D shallow velocity structure along the north-south Palashi-Kandi profile in the West Bengal sedimentary basin has been updated by travel-time inversion of seismic refraction, wide-angle reflection and gravity data. A six-layer shallow model up to a depth of about 7 km has been derived. The first layer, which has an average velocity of 2.0 kms?1, represents the alluvium deposit, which rests over the shale formation with average velocity of 3.0 kms?1. The thin (200 m) Sylhet limestone, observed at a nearby Palashi well, remains hidden in the present data set. Hence a 200-m thin layer with a velocity of 3.7 kms?1, corresponding to the Sylhet limestone, has been assumed to be present throughout the profile. The fourth layer with a velocity of 4.5–4.7 kms?1 at a depth of 1.7–2.4 km represents the Rajmahal traps. The ‘skip’ phenomenon and rapid amplitude decay of first arrivals indicate a low-velocity zone (LVZ) in the study area. Using the ‘skip’ phenomena and wide-angle reflection data, identified on seismograms, the LVZ with a velocity of 4.0 kms?1, indicating the Gondwana sediments, has been delineated below the Rajmahal traps. The next layer with a velocity 5.4–5.6 kms?1 overlying the crystalline basement (5.8–6.25 kms?1) may be associated with the Singhbhum group of meta volcanic rock that has been exposed in the western part of the basin. The basement lies at a variable depth of 4.9 to 6.8 km. The overall uncertainties of various velocity and boundary nodes are ± 0.15 kms?1 and ± 0.5 km, respectively. The elevated basement feature in the north might have acted as a structural barrier for the deposition of Sylhet limestone during the Eocene epoch. The seismically derived shallow structure correctly explains the observed Bouguer gravity anomaly along the profile. The addition of reflections in the present analysis provides a stronger control on the depths and velocities of basement and overlying sedimentary formations, compared to the earlier model derived mainly by the first arrival seismic data.  相似文献   

8.
Introduction The calculation of seismic wave traveltimes is a basic and the most important step in tomo-graphy, seismic wave forward modeling and Kirchhoff prestack depth migration. Limitations withtraditional ray tracing fall into four categories. a) Analytical methods can only realize ray tracingfor simply varying velocity fields, so they have relative small applied-range; b) Shooting methodsof ray tracing can cause shadow zones. When the shadow zones exist the method will invalid; c)…  相似文献   

9.
While seismic imaging for crustal and mantle structures has traditionally relied on surface wave and refraction data, the use of reflection data for crustal-scale targets has been largely limited to the common midpoint (CMP) stack techniques. The rapid increase in the number of seismograph array deployments in recent years in crustal and mantle seismology has reached a level such that a re-examination of the imaging techniques is becoming necessary. In this paper we show the advantage of prestack depth imaging for crustal reflection studies, based on data from two reflection surveys of the Los Angeles Regional Seismic Experiment (LARSE) to map faults and crustal-scale structures. Our analysis indicates that the quality of the previous images of these surveys is limited by the CMP stack technique. For comparison, we present here depth images of the same LARSE data using wave equation prestack depth imaging and a tomographic velocity model based on first arrivals of the LARSE surveys and local earthquakes. Our new images are considerably improved over previous images in terms of resolution and reflector continuity. The new images show reflectors throughout the crust and suggest truncations in the Moho associated with the San Andreas Fault. A series of bright reflector segments, which are associated with the San Gabriel and San Andreas faults have been identified and might represent reflections from the fault zones. Our results suggest that the presence of high noise level, strong lateral velocity heterogeneity and wide angle geometry argue for, rather than against, the use of prestack depth imaging over the simple CMP stack techniques. As demonstrated in this study, it is now viable to conduct prestack depth imaging of crustal reflection data using a velocity model based on earthquake first arrivals thanks to the dense acquisition deployment.  相似文献   

10.
柴达木东盆地的深层地震反射波和地壳构造   总被引:13,自引:4,他引:13       下载免费PDF全文
一、引言 地壳和上地幔顶部的构造,对研究地震发生、发展及演变过程的深部背景,以及划分地震活动块体和探讨地震成因有着重要的意义。然而地壳构造的研究,又是与地震学的发展密切相关。1909年,莫霍洛维奇在近震研究中,首先发现了地壳与上地幔分界面的首波,其覆盖层的平均速度 =6.3公里/秒,界面速度Vd=8.0公里/秒(简称M界面)。后于1923年,康拉德(conrad)也是根据天然地震资料鉴别出一个平均速度为=5.4  相似文献   

11.
Field static corrections in general need be applied to all onshore seismic reflection data to eliminate the disturbing effects a weathering layer or near-surface low velocity zone has on the continuity of deep seismic reflections. The traveltimes of waves refracted at the bottom of the low velocity zone (or intermediate refracting interfaces) can often be observed as first breaks on shot records and used to develop a laterally inhomogeneous velocity model for this layer, from which the field static corrections can then be obtained. A simple method is described for computing accurate field statics from first breaks. It is based on a linearization principal for traveltimes and leads to the algorithms that are widely and successfully applied within the framework of seismic tomography. We refine an initial model for the low velocity layer (estimated by a standard traveltime inversion technique) by minimizing the errors between the observed first arrivals on field records and those computed by ray theory through an initial model of the low velocity layer. Thus, one can include more lateral velocity variations within the low velocity layers, which are important to obtain good field static corrections. Traditional first break traveltime inversion methods cannot, in general, provide such refined velocity values. The technique is successfully applied to seismic data from the Amazon Basin. It is based on a simple model for the low velocity layer that consists of an undulating earth surface and one planar horizontal refractor overlain by a laterally changing velocity field.  相似文献   

12.
对11炮宽角地震反射/折射的Pg波走时数据进行了反演,结果表明:阿尼玛卿缝合带东段基底速度结构整体呈低速带分布,两侧的速度分布相对均匀;缝合带内基底界面剧烈下凹,最深达5.5 km,不存在稳定的基底界面;松潘-甘孜微块体基底界面整体埋深达3.5 km,相对平坦,其中部略微下凹;从缝合带过渡到西秦岭褶皱带,基底界面急剧抬升至1.8 km,之后迅速下降至4.7 km,然后趋于平坦;缝合带的地壳变形存在挤压和走滑两种形式,在缝合带及邻近地区,上部地壳物质曾有过向北方向逃逸的迹象.  相似文献   

13.
The travel time inversion of wide-angle seismic data is a technique commonly used in the deep seismic sounding. We propose an application of this technique to a smaller scale of a sedimentary layer, where the characteristics of seismic observations changes significantly. Field observations confirmed by synthetic analysis recognize the dominant amplitudes of wide-angle post-critical reflections. A case study is presented in this paper, of a joint interpretation of conventional reflection seismic with reflection imaging, combined with the wide-angle travel time inversion of additional full-spread observations. A joint interpretation results in a precise recognition of the seismic velocity distribution, that is further used for the seismic depth conversion with the uncertainty analysis of the depth of the reflecting horizons. Despite the salt layer in the studied structure this method is able to precisely recognize the seismic velocities of the sub-salt structures.  相似文献   

14.
A 400 km-long wide-angle seismic experiment along Lianxian-Gangkou profile in South China was carried out to study contact relationship between southeast continental margin of Yangtze block and northwest continental margin of Cathaysia block. We reconstructed crustal wide-angle reflection structure by the depth-domain pre-stack migration and the crustal velocity model constructed from the traveltime fitting. The wide-angle reflection section shows different reflection (from crystalline basement and Moho) pa...  相似文献   

15.
Rayleigh wave phase velocities of South China block and its adjacent areas   总被引:2,自引:0,他引:2  
Using records of continuous seismic waveforms from 609 broadband seismic stations in the South China Block and its adjacent areas in 2010–2012, empirical Green's functions of surface waves were obtained from cross-correlation functions of ambient noise data between these stations. High quality phase velocity dispersion curves of Rayleigh waves were obtained using time-frequency analysis. These interstation dispersion curves were then inverted to build Rayleigh wave phase velocity maps at periods of 6–50 s. The results of phase velocity maps indicate that phase velocities at 6–10 s periods are correlated with the geological features in the upper crust. Major basins and small-scale grabens and basins display slow velocity anomalies; while most of the orogenic belts and the fold belts display high velocity anomalies. With the gravity gradient zone along Taihang Mountain to Wuling Mountain as the boundary for the phase velocity maps at period of 20–30 s, the western area mainly displays low velocity anomalies, while the eastern side shows high velocity anomalies. Phase velocities in the eastern South China Block south to the Qinling-Dabie orogenic belt is higher than that in the eastern North China Block to the north, which is possibly due to the differences of tectonic mechanisms between the North China Craton and the South China Block. The phase velocities at periods of40–50 s are possibly related to the lateral variations of the velocity structure in the lower crust and upper mantle: The low-velocity anomalies in the eastern part of the Tibetan Plateau are caused by the thick crust; while the Sichuan Basin and the southern part of the Ordos Basin display distinct high-velocity anomalies, reflecting the stable features of the lithosphere in these blocks. The lateral variation pattern of phase velocities in the southern part of the South China Block is not consistent with the surface trace of the block boundary in the eastern Yunnan Province and its vicinities. The phase velocities in the Sichuan Basin are overall slow at short periods and gradually increase with period from the central part to the edge of the basin, indicating the features of shallower basement in the center and overall stable lithospheric mantle of the basin. The middle and upper crust of the southern Ordos Basin in the North China Block is heterogeneous, while in lower crust and the uppermost mantle the phase velocities mainly exhibit high anomalies. High-velocity anomalies are widespread at the middle of the Qinling-Dabie orogenic belt, as well as the areas in southeastern Guangxi with Caledonian granite explosion, but its detailed mechanism is still unclear.  相似文献   

16.
Ancient Tethyan vestige extends from Alps, Kaebaiqn Mountain and eastward through Turkey, IranAfghanistan, and the middle and north of Tibetan Plateau, then turns to western Yunnan and Sichuan, andfinally ends at Zhongnan Peninsula. The PaleoTethyan is supposed as one eastward opened Oceanand superposed by tectonic deformation in the latestage of the late Mesozoic to Paleocene of Cenozoicand covered by Mesozoic and Cenozoic deposits. The Sanjiang region in southwestern China is in the…  相似文献   

17.
Imaging pre‐salt reflections for data acquired from the coastal region of the Red Sea is a task that requires prestack migration velocity analysis. Conventional post‐stack time processing lacks the lateral inhomogeneity capability, necessary for such a problem. Prestack migration velocity analysis in the vertical time domain reduces the velocity–depth ambiguity that usually hampers the performance of prestack depth‐migration velocity analysis. In prestack τ‐migration velocity analysis, the interval velocity model and the output images are defined in τ (i.e. vertical time). As a result, we avoid placing reflectors at erroneous depths during the velocity analysis process and thus avoid inaccurately altering the shape of the velocity model, which in turn speeds up the convergence to the true model. Using a 1D velocity update scheme, the prestack τ‐migration velocity analysis produces good images of data from the Midyan region of the Red Sea. For the first seismic line from this region, only three prestack τ‐migration velocity analysis iterations were required to focus pre‐salt reflections in τ. However, the second line, which crosses the first line, is slightly more complicated and thus required five iterations to reach the final, reasonably focused, τ‐image. After mapping the images for the two crossing lines to depth, using the final velocity models, the placements of reflectors in the two 2D lines were consistent at their crossing point. Some errors occurred due to the influence of out‐of‐plane reflections on 2D imaging. However, such errors are identifiable and are generally small.  相似文献   

18.
2-D shallow velocity structure is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the E–W trending Narayanpur–Nandurbar and N–S Kothar–Sakri profiles, located in the Narmada–Tapti region of the Deccan syneclise. Deccan volcanic (Trap) rocks are exposed along the two profiles. Inversion of seismic data reveals two layered velocity structures above the basement along the two profiles. The first layer with a P-wave velocity of 5.15–5.25 km s?1 and thickness varying from 0.7–1.5 km represents the Deccan Trap formation along the Narayanpur–Nandurbar profile. The Trap layer velocity ranges from 4.5 to 5.20 km s?1 and the thickness varies from 0.95 to 1.5 km along the Kothar–Sakri profile. The second layer represents the low velocity Mesozoic sediments with a P-wave velocity of 3.5 km s?1 and thickness ranging from about 0.70 to 1.6 km and 0.55 to 1.1 km along the E–W and N–S profiles, respectively. Presence of a low-velocity zone (LVZ) below the volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data together with the prominent wide-angle reflection phase immediately after the first arrivals from the Deccan Trap formation. The basement with a P-wave velocity of 5.8–6.05 km s?1 lies at a depth ranging from 1.5 to 2.45 km along the profiles. The velocity models of the profiles are similar to each other at the intersection point. The results indicate the existence of a Mesozoic basin in the Narmada–Tapti region of the Deccan syneclise.  相似文献   

19.
Estimation of Thomsen's anisotropic parameters is very important for accuratetime-to-depth conversion and depth migration data processing. Compared with othermethods, it is much easier and more reliable to estimate anisotropic parameters that arerequired for surface seismic depth imaging from vertical seismic profile (VSP) data, becausethe first arrivals of VSP data can be picked with much higher accuracy. In this study, wedeveloped a method for estimating Thomsen's P-wave anisotropic parameters in VTImedia using the first arrivals from walkaway VSP data. Model first-arrival travel times arecalculated on the basis of the near-offset normal moveout correction velocity in VTI mediaand ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropicparameters 0 and e are determined by minimizing the difference between the calculatedand observed travel times for the near and far offsets. Numerical forward modeling, usingthe proposed method indicates that errors between the estimated and measured anisotropicparameters are small. Using field data from an eight-azimuth walkaway VSP in TarimBasin, we estimated the parameters 0 and e and built an anisotropic depth-velocity modelfor prestack depth migration processing of surface 3D seismic data. The results showimprovement in imaging the carbonate reservoirs and minimizing the depth errors of thegeological targets.  相似文献   

20.
大丰—包头剖面以"高密度观测点距与炮距"为特点,我们在1334 km测线上获得了21炮高信噪比的地震资料.在对Pg波震相特点分析基础上利用反演方法处理、构建了基底的精细结构图像,揭示了沿剖面不同构造地块基底结构的差异.苏北盆地基底埋深4.5~9.0 km、苏鲁隆起1.5~2.0 km,基底埋深与速度结构的强烈起伏变化可视其为华北与扬子板块碰撞、挤压构造环境下形成复杂的构造格局在地震学上的体现;鲁西隆起区基底埋深浅、速度高,结构稳定;华北盆地Pg波到时滞后、视速度低,基底埋深7.0~10.km,速度结构与基底面存在局部的起伏变化.诸多现象揭示出该区为新生代沉积巨厚、规模较大的基底坳陷区.同时在盆地内不同构造单元基底结构呈局部分块、凹陷与凸起并存的构造格局,显示出新生代沉积活动显著、变化强烈、结构不稳定的构造特点;太行山前断裂、聊兰断裂是具有显著地震学标志的断裂构造带,断裂两侧基底界面呈现出"断崖式塌陷"和速度结构的强烈横向非均匀性.综合研究认为,太行山前断裂是华北地区一条重要的构造带,它的复杂性不仅体现在两侧地形地貌、地层介质的截然不同,其基底埋深及速度结构、地壳及地幔岩石圈结构均存在显著的差异,其重要的标志是太行山以东不仅地壳厚度发生了相当规模的减薄,岩石圈的厚度也明显减薄,亦即形成了华北克拉.通破坏在东西部其基底一地壳一岩石圈的结构在空间上具有明显的差异性及强烈的横向非均匀性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号