首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通过1991 年6 月6 日一个复杂的太阳活动事件( 包括宽带射电运动Ⅳ型爆发、脉冲相伴生的白光耀斑、耀斑后环及其伴生的射电多重短周期( 约1 - 4 秒) 脉动现象等) 的分析,探讨了白光耀斑产生的射电辐射特征,根据太阳白光耀斑和射电运动Ⅳ型爆发产生的物理过程,着重讨论了射电运动Ⅳ型爆发、耀斑后环和短周期脉动现象,并认为它们可能是白光耀斑的对应物  相似文献   

2.
在本文中,我们对米波太阳射电爆发的观测和研究(Spikes以及各类爆发)进行了较全面的总结,对Spikes、米波射电爆发及基和太阳耀斑、CME(日冕物质抛射)的相互关系也给出了比较详细的讨论关加以概括;针对米波射电的未来观测和研究、米波Spikes与广泛的其它太阳耀斑现象的米波射电爆发才耀斑及CME的关系和米波射电辐射的理论问题,在理论和观测两方面提出了未来工作的设想和建议。主要观战和结论有:  相似文献   

3.
谢瑞祥  汪敏 《天文学报》1999,40(4):419-427
通过1991年6月6日一个复杂的太阳活动事件(包括宽带射电运动Ⅳ型爆发、脉冲相伴生的白光耀斑、耀斑后环及其伴生的射电多重短周期(约1-4劝现象等)的分析,探讨了白光耀斑产生的射电辐射特征,根据太阳白光耀斑和射电运动Ⅳ型爆发产生的物理过程,着重讨论了射电运动Ⅳ型爆发、耀斑后环和短周期脉动现象,并认为它们可能是白光耀斑的对应物。  相似文献   

4.
结合紫金山天文台的太阳射电观测资料,对太阳耀斑中的射电漂移结构进行研究。过去的观测发现,漂移结构太阳耀斑产生的射电爆发伴随一种特殊的结构。观测特征是其中的细结构是由许多小脉冲组成,但整体随时间漂移。过去观测到的这种结构是向低频漂移。观测上他们与太阳耀斑中的等离子团抛射相对应。2003年3月18日,紫金山天文台射电频谱仪观测到的漂移结构是漂向高频。  相似文献   

5.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型爆发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段射电辐射和太阳物质抛射等)观测资料的分析,定性地探讨了WLF的起源、加热机制和发射地点的问题.假设了WLF和射电运动IV型射电爆发可能有共同起源的低日冕电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热电子沉降能量于色球层,产生色球层的压缩波或向下的辐射场进而使上光球层温度增加导致WLF此外,提出WLF可能会伴有耀斑后环和射电精细结构的对应物.  相似文献   

6.
本文概述了太阳射电天文学的历史,从早期的失败到1942年Hey对太阳射电波的偶然发现为止.文中讨论了太阳射电研究在米波-十米波、千米-百米波和厘米波所取得的主要进展。同时讨论了与射电爆发共生的耀斑的观测以及用等离子体辐射和回旋同步加速辐射对这些观测所作的解释。从空间对与Ⅲ型爆发有关的等离子振荡和一维电子速度分布的测量,业已证实了用等离子体辐射对观测所作的解释。Ⅲ型爆发的米波-十米波射电日像仪测量和千米-百米波的飞船测量表明,Ⅲ型电子束流是沿着浓密的日冕流和沿着阿基米德螺旋轨道运动的。在厘米波段利用角秒分辨率的大天线阵对活动区和射电爆发所作的高空间分辨率观测,表明了它在观测日冕磁场、了解冕环的物理性质、测量耀斑附近磁场结构,从而在研究太阳耀斑起源方面有着巨大的威力.  相似文献   

7.
太阳空间观测揭示出太阳的高能电子、高能质子发射以及γ射线爆发。证实了有关的太阳射电辐射理论、揭示出太阳耀斑中的核反应。日冕物质抛射和耀斑等离子体云的空间观测揭示出它们之间的区别和联系, 认识到耀斑的热区和冷区。太阳和日球磁场观测发展了磁流体动力学理论  相似文献   

8.
北京天文台1 .02 .0GHz 太阳射电频谱仪从1994 年开始观测至1998 年9 月记录到太阳射电爆发171 个,2 .63 .8GHz 太阳射电频谱仪1996 年9 月投入观测至1998 年9 月,记录到146 个太阳射电爆发。1998 年4 月15 日太阳射电爆发同时在这两台频谱仪上记录到。这个事件在时间和频率上显示了丰富的幅度和结构的变化。发现了微波Ⅲ型爆发对群,并存在着丰富的快速活动现象。取得了高时间分辨率、高质量的动态谱资料,为研究耀斑各种尺度的时间及空间演化过程提供了丰富的信息。  相似文献   

9.
太阳空间观测揭示出太阳的高能电子,高能质子发射以及γ射线爆发。证实了有关的太阳射电辐射理论,揭示出太阳耀斑中的核反应。日冕物质抛射和耀斑等离子体云的空间观测揭示出它们之间的区别和联系,认识到耀斑的热区和冷区。在阳和日球磁场以观测发展了磁流体动力学理论。  相似文献   

10.
日冕物质抛射与共生射电爆发的地面和空间联测研究   总被引:1,自引:0,他引:1  
引述了近年来太阳和空间物理的一大研究成果;产生日地空间射电爆发和地球物理响应的主因不是太阳耀斑,而是日冕物质抛射(CME),论述了射电爆发在研究CME中的作用;分析了1991-06-15CME事件中射电爆发和质子事件产生的物理过程;介绍了地面/空间对CME和共生射电爆发联测研究的新进展;提出了我国今后开展地面/空间联测研究的设想和建议。  相似文献   

11.
Cho  K.-S.  Kim  K.-S.  Moon  Y.-J.  Dryer  M. 《Solar physics》2003,212(1):151-163
A new solar radio spectrograph to observe solar radio bursts has been installed at the Ichon branch of the Radio Research Laboratory, Ministry of Information and Communication, Korea. The spectrograph consists of three different antennas to sweep a wide band of frequencies in the range of 30 MHz ∼ 2500 MHz. Its daily operation is fully automated and typical examples of solar radio bursts have been successfully observed. In this paper we describe briefly its hardware and data processing methods. Then we present coronal shock speeds estimated for 34 type II bursts from May 1998 to November 2000 and compare them with those from other observatories. We also present the close relationship between onset time of type II bursts and X-ray flares as well as their associations with coronal mass ejections.  相似文献   

12.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

13.
The phenomena observed at the Sun have a variety of unique radio signatures that can be used to diagnose the processes in the solar atmosphere. The insights provided by radio observations are further enhanced when they are combined with observations from space-based telescopes. This Topical collection demonstrates the power of combination methodology at work and provides new results on i) type I solar radio bursts and thermal emission to study active regions; ii) type II and IV bursts to better understand the structure of coronal mass ejections; and iii) non-thermal gyro-synchrotron and/or type III bursts to improve the characterisation of particle acceleration in solar flares. The ongoing improvements in time, frequency, and spatial resolutions of ground-based telescopes reveal new levels in the complexity of solar phenomena and pose new questions.  相似文献   

14.
Solar radio bursts at long wavelengths provide information on solar disturbances such as coronal mass ejections (CMEs) and shocks at the moment of their departure from the Sun. The radio bursts also provide information on the physical properties (density, temperature and magnetic field) of the medium that supports the propagation of the disturbances with a valuable cross-check from direct imaging of the quiet outer corona. The primary objective of this paper is to review some of the past results and highlight recent results obtained from long-wavelength observations. In particular, the discussion will focus on radio phenomena occurring in the outer corona and beyond in relation to those observed in white light. Radio emission from nonthermal electrons confined to closed and open magnetic structures and in large-scale shock fronts will be discussed with particular emphasis on its relevance to solar eruptions. Solar cycle variation of the occurrence rate of shock-related radio bursts will be discussed in comparison with that of interplanetary shocks and solar proton events. Finally, case studies describing the newly-discovered radio signatures of interacting CMEs will be presented.  相似文献   

15.
Using the observed data for metric and hectometric type III radio bursts, the dependence of burst characteristics on the solar longitude has been examined over a wide frequency range. It is found that there exists an east-west asymmetry for the extension of metric type III bursts into hectometric wavelength range. In particular, hectometric bursts are rarely observed for solar flares associated with metric bursts eastward solar longitude 60°E. Furthermore, for eastern longitudes, the low frequency radio observations show a large dispersion in drift time interval.  相似文献   

16.
Radio observation is one of important methods in solar physics and space science. Sometimes, it is almost the sole approach to observe the physical processes such as the acceleration, emission, and propagation of non-thermal energetic particles, etc. So far, more than 100 solar radio telescopes have been built in the world, including solar radiometers, dynamic spectrometers, and radioheliographs. Some of them have been closed after the fulfillment of their primary scientific objectives, or for their malfunctions, and thus replaced by other advanced instruments. At the same time, based on some new technologies and scientific ideas, various kinds of new and much more complicated solar radio telescopes are being constructed by solar radio astronomers and space scientists, such as the American E-OVSA and the solar radio observing system under the framework of Chinese Meridian Project II, etc. When we plan to develop a new solar radio telescope, it is crucial to design the most suitable technical parameters, e.g., the observing frequency range and bandwidth, temporal resolution, frequency resolution, spatial resolution, polarization degree, and dynamic range. Then, how do we select a rational set of these parameters? The long-term observation and study revealed that a large strong solar radio burst is frequently composed of a series of small bursts with different time scales. Among them, the radio spike burst is the smallest one with the shortest lifetime, the narrowest bandwidth, and the smallest source region. Solar radio spikes are considered to be related to a single magnetic energy release process, and can be regarded as an elementary burst in solar flares. It is a basic requirement for the new solar radio telescope to observe and discriminate these solar radio spike bursts, even though the temporal and spatial scales of radio spike bursts actually vary with the observing frequency. This paper presents the scaling laws of the lifetime and bandwidth of solar radio spike bursts with respect to the observing frequency, which provide some constraints for the new solar radio telescopes, and help us to select the rational telescope parameters. Besides, we propose a spectrum-image combination mode as the best observation mode for the next-generation solar radio telescopes with high temporal, spectral, and spatial resolutions, which may have an important significance for revealing the physical essence of the various non-thermal processes in violent solar eruptions.  相似文献   

17.
Slow drift (Type II) radio bursts from the sun are believed to be caused by a primary disturbance moving outward through the solar atmosphere with a velocity of about 1000 km/sec. Analysis of the 2 years, 1956 October 1 through 1958 September 30, over the sunspot maximum shows that 45 per cent of these bursts are associated with the subsequent occurrence of terrestrial auroræ and magnetic storms. The mean delay between the radio bursts and the terrestrial disturbances is 33 hr, which is in good accord with the velocity for the disturbing source as deduced from the radio data. Investigation of the properties of the individual slow drift bursts and their association with other solar radio and optical phenomena reveals no completely conclusive criteria to explain why only 45 per cent of the bursts are geomagnetically important. The geomagnetic effects are enhanced, however, if the bursts occur near the equinoxes and if they are accompanied by a flare o'f importance 2 or 3, or by continuum (Type IV) radiation.

In the reverse association, with radio data available for an average 14 hr daily, it is shown that at least 60 per cent of magnetic storms are preceded, within 4 days, by a slow drift burst.  相似文献   


18.
A number of meter wavelength solar radio bursts of spectral Type-III have been observed by means of a solar radio spectroscope (40–240 MHz) simultaneously with sudden enhancements of low frequency (164 KHz) field strength (SES's) of Radio Tashkent which are known to take place due to the enhancements of D-layer ionization caused by flare-time solar X-rays.The association between the solar X-ray flares as detected by the SES's and the Type-III meter-wave solar bursts is discussed. It is found that the association of SES's and meter wave solar bursts, which implies the ejection of flare-time electrons towards the photosphere as well as corona, is about 72%.  相似文献   

19.
The low frequency array (LOFAR) radiotelescope will be a powerful instrument for answering fundamental, unresolved scientific questions concerning solar system radio phenomena and related emissions from nearby stellar systems. This paper reviews the phenomena, emission mechanisms, open scientific questions, and LOFAR's capabilities. LOFAR will detect metric solar radio bursts in the corona and interplanetary medium, out to distances of order 10 solar radii, as well as Jovian radio emissions. Arguments are given that LOFAR may be sufficiently sensitive to detect stellar analoges of solar type II and III bursts, and may detect cyclotron-maser emissions from extra-solar planets. LOFAR may also aid space weather research, by passively detecting coronal mass ejections (CMEs) via scintillation and Faraday rotation effects, or by detecting radar signals bounced off CMEs and coronal density structures if a suitable solar radar is developed.  相似文献   

20.
It is well established that solar Type-II radio bursts are signatures of magnetohydrodynamical (MHD) shock waves propagating outward through the solar corona. Nevertheless, there are long-standing controversies about how these shocks are formed; solar flares and the coronal mass ejections (CMEs) are considered to be the most likely drivers. We present the results of the analysis of four solar Type-II bursts recorded between 20 January 2010 and 17 November 2011 by the Compound Astronomical Low-frequency Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO-BR) (in Brazil), which operates in the frequency range of 45?–?870 MHz. For all four solar Type-II radio bursts, which consisted of one event without band splitting and three split-band variants, the outcomes are consistent with those reported in the literature. All four Type-II radio bursts were accompanied by both solar flares and CMEs, which are associated with the impulsive phase of the flares and, very likely, with the acceleration phase of the CMEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号