首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A parameterization scheme for the thermal effects of subgrid scale orography is incorporated into a regional climate model (developed at Nanjing University) and its impact on modeling of the surface energy budget over East Asia is evaluated. This scheme includes the effect of terrain slope and orientation on the computation of solar and infrared radiation fluxes at the surface, as well as the surface sensible and latent heat fluxes. Calculations show that subgrid terrain parameters alter the diurnal cycle and horizontal distributions of surface energy budget components. This effect becomes more significant with increased terrain slope, especially in winter. Due to the inclusion of the subgrid topography, the surface area of a model grid box changes over complex terrain areas. Numerical experiments, with and without the subgrid scale topography scheme, show that the parameterization scheme of subgrid scale topography modifies the distribution of the surface energy budget and surface temperature around the Tibetan Plateau. Comparisons with observations indicate that the subgrid topography scheme, implemented in the climate model, reproduces the observed detailed spatial temperature structures at the eastern edge of the Tibetan Plateau and reduces the tendency to overestimate precipitation along the southern coastal areas of China in summer.  相似文献   

2.
Two methods are examined for combining measurements from instrumented aircraftand towers to estimate regional scale evapotranspiration. Aircraft data provided spatially averaged values of properties of the surface, the evaporative fraction and maximum stomatal conductance. These quantities are less sensitive to meteorological conditions than the turbulent fluxes of heat and water vapour themselves. The methods allowed aircraft data collected over several days to be averaged and thus to reduce the random error associated with the temporal under-sampling inherent in aircraft measurements. Evaporative fraction is estimated directly from the aircraft data, while maximum stomatal conductance is estimated by coupling the Penman–Monteith equation to a simple model relating surface conductance to the incoming shortwave radiation and specific humidity saturation deficit. The spatial averages of evaporative fraction and maximum stomatal conductance can then be used with routine tower data to estimate the regional scale evapotranspiration. Data from aircraft flights and six ground based sites during the OASIS field campaign in south–east New South Wales in 1995 have been used to check the methods. Both the evaporative fraction and the maximum stomatal conductance derived from the aircraft data give information on the spatial variability of the surface energy budget at scales from 10 to 100 km. Daily averaged latent heat fluxes estimated using these methods for the OASIS study region agree with the available observations in quasi-stationary conditions or in weakly non-stationary conditions when the data from several aircraft flights are averaged to reduce the impact of short term imbalances in the surface energy budget.  相似文献   

3.
Two simple models are presented for describing the surface energy budget above vegetated surfaces. One is the traditional single-source model that includes only one energy budget equation for the entire canopy-soil system, and the other is the double-source model that includes separate energy budget equations for the vegetation canopy and the underlying soil surface. In both models, the bulk transfer coefficients needed to solve the energy budget equations are parameterized as functions of leaf area index, leaf transfer coefficients, and soil surface roughnesses to obtain the best fit to values calculated by a standard multilayer-canopy model. The validity of these models was tested by comparing their performance with that of the multilayer-canopy model for simulation of the surface energy balance and nocturnal drainage flow above vegetation. Results show that the double-source model gives reliable estimations for all cases ranging from sparse to dense vegetation covers; the single-source model is only applicable to dense, fully-covered vegetation. It is also shown that sparse vegetation weakens nocturnal drainage flow, since it isolates the cool underlying soil surface from the atmosphere above the canopy. This phenomenon cannot be described by a traditional single-source model incorporated commonly in many atmospheric models; however, the double-source model adequately describes this process.  相似文献   

4.
Small water bodies create their own characteristic local meteorological environments. The heat and water budgets will generally vary with surface area and water depth. If a small pond gradually becomes covered by vegetation, its meteorological conditions will change. On occasion, a vegetated area may change into a pond, complete with vegetation established in the water and extending above the surface. Such are beaver ponds and other flooded areas.

The paper discusses the main features of the development of beaver ponds and their heat and water budgets at different stages. The energy budget programme used was previously developed by the authors, but it has been modified to account for the different phases of the pond development. The effects of the various physical changes are evaluated by comparing the individual heat and water budget terms for different stages between an open lake surface and a forest cover.

The local heat budget will only be affected on a small scale by the establishment of a beaver pond, but the influence on the water budget has far‐reaching consequences.  相似文献   

5.
Summary Knowledge of how energy budget components vary with time, vegetation type and stage of development and field size is important if we are to increase our understanding of the energy budget on a regional scale. The aim of this study was to quantify the seasonal and diurnal variation of energy budget components of a 2.6 ha short-rotation stand. Measurements were made using a thermometer interchange system for gradient and Bowen ratio estimations. Energy storage in soil, air and biomass was determined from temperature and humidity measurements. The partitioning of available energy between sensible and latent heat fluxes changed drastically at the beginning of the season. From the first half of May until the second half of June the maximum (noon) latent heat flux increased by a factor of 3, the total storage decreased by a factor of 2 and the sensible heat flux decreased by a factor of 4.5, while net radiation was unchanged. The vapour pressure deficit was similar during these periods but the leaf area index increased from about zero to three. On a mean monthly basis, the sensible heat flux was negative (directed towards the surface) from June to October, i.e., during most of the season. Heat was supplied to the atmosphere only at the beginning of the season for this type of short-rotation stand. Heat storage in air and biomass was significant on an hourly basis, especially in mornings and evenings when it could be of the same order as the net radiation. It was concluded that the development stage of the short-rotation stand had a large influence on how the energy was distributed between the convective fluxes. It was also concluded that storage in air and biomass had to be accounted for if precise estimates of energy balance on a shorter (hourly) time scale were required.With 5 Figures  相似文献   

6.
The method of the AVHRR-3 (NOAA) radiometer measurement data subject processing is produced for the retrieval of underlying surface temperature and several vegetation characteristics under cloud-free conditions. A technology for deriving the values of these parameters from the MODIS (EOS/Terra and Aqua) radiometer data is developed. The estimation of the temperature and vegetation characteristics is carried out for the Seim River basin (Kursk region) with the catchment area of 7460 km2 for 2003–2005 vegetation seasons. Practical coincidence of estimations of AVHRR- and MODIS-derived temperatures, as well as the coincidence with ground observation results, is revealed. Statistics of these estimation errors is analyzed. Satellite-derived estimations of land surface temperature (LST) and vegetation characteristics are used for the calibration and verification of the developed model of the vertical heat and water transfer in the soil-vegetation-atmosphere system (SVAT). The model is intended for calculations of evapotranspiration, soil water and heat content, latent and sensible heat fluxes, and other water and heat balance components. The abilities to compute these parameters using the satellite estimations of the leaf area index and projective vegetation cover fraction as the model parameters and LST satellite estimations as the model input variable are investigated.  相似文献   

7.
We used sensitivity-analysis techniques to investigate the behaviour of the land-surface model UTOPIA while simulating the micrometeorology of a typical northern Italy vineyard (Vitis vinifera L.) under average climatic conditions. Sensitivity-analysis experiments were performed by sampling the vegetation parameter hyperspace using the Morris method and quantifying the parameter relevance across a wide range of soil conditions. This method was used since it proved its suitability for models with high computational time or with a large number of parameters, in a variety of studies performed on different types of biophysical models. The impact of input variability was estimated on reference model variables selected among energy (e.g. net radiation, sensible and latent heat fluxes) and hydrological (e.g. soil moisture, surface runoff, drainage) budget components. Maximum vegetation cover and maximum leaf area index were ranked as the most relevant parameters, with sensitivity indices exceeding the remaining parameters by about one order of magnitude. Soil variability had a high impact on the relevance of most of the vegetation parameters: coefficients of variation calculated on the sensitivity indices estimated for the different soils often exceeded 100 %. The only exceptions were represented by maximum vegetation cover and maximum leaf area index, which showed a low variability in sensitivity indices while changing soil type, and confirmed their key role in affecting model results.  相似文献   

8.
TheInfluenceofChangesinVegetationTypeontheSurfaceEnergyBudget¥RunhuaYang;J.Shukla,(CenterforOcean-Land-AtmosphereStudies4041P...  相似文献   

9.
Surface-based and aircraft measured fluxes over the heterogeneous surface in HAPEX-MOBILHY are analyzed for the ten flight days when cloud cover above the boundary layer was minimal. The fair-weather climatology of the spatial variation of surface fluxes is estimated to provide an assessment of the generality of previous case studies appearing in the literature. For the 10-day averages, greater heating over the forest generates a forest breeze which leads to rising motion and a modest increase of boundary-layer cloud cover at the forest edge. The exchange coefficients and effective roughness lengths are computed for local averages (15 km scale) and for regional averages (100 km scale) intended to represent a range of grid sizes in numerical models of the atmosphere. The effective roughness length for momentum over the mixed agricultural region for both scales is on the order of 1 m, apparently due to bluff roughness effects associated with scattered trees, edges of small woods and other obstacles. This roughness length value is an order of magnitude larger than values used in numerical models for the same region, which are based on the dominant vegetation type. The spatially varying effective roughness length for heat is computed for use in those models which use surface radiation temperature to estimate surface heat flux. The effective roughness lengths for heat are found to be smaller than those typically used in numerical models of the atmosphere.  相似文献   

10.
Extrapolating energy fluxes between the ground surface and the atmospheric boundary layer from point-based measurements to spatially explicit landscape estimation is critical to understand and quantify the energy balance components and exchanges in the hydrosphere, atmosphere, and biosphere. This information is difficult to quantify and are often lacking. Using a Landsat image (acquired on 5 August 2004), the flux measurements from three eddy covariance flux towers (a 1987 burn, a 1999 burn, and an unburned control site) and a customized satellite-based surface energy balance model of Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC), we estimated net radiation, sensible heat flux (H), latent heat flux (LE), and soil heat flux (G) for the boreal Yukon River Basin of Interior Alaska. The model requires user selection of two extreme conditions present within the image area to calibrate and anchor the sensible flux output. One is the “hot” condition which refers to a bare soil condition with specified residual evaporation rates. Another one is the “cold” condition which refers to a fully transpiring vegetation such as full-cover agricultural crops. We selected one bare field as the “hot” condition while we explored three different scenarios for the “cold” pixel because of the absence of larger expanses of agricultural fields within the image area. For this application over boreal forest, selecting agricultural fields whose evapotranspiration was assumed to be 1.05 times the alfalfa-based reference evapotranspiration as the “cold” pixel could result in large errors. Selecting an unburned flux tower site as the “cold” pixel could achieve acceptable results, but uncertainties remain about the energy balance closure of the flux towers. We found that METRIC performs reasonably well in partitioning energy fluxes in a boreal landscape.  相似文献   

11.
The impact of mesoscale moisture variability on the vertical energy transfer through a pre-frontal boundary layer is studied with NOPEX aircraft data. The moisture variability relates to a cold front that passed the area 2 1/2 hours after the observations. We find a density front ahead of the cold front. The large vertical divergence of the turbulent moisture flux in the surface layer is partly related to this moisture variability. Large scale horizontal advection contributes to the observed vertical turbulent flux divergence. The estimated horizontal mesoscale advection term in the budget of sensible heat and moisture is on average small but locally it can be large. This term acts to re-distribute moisture in the boundary layer and leads to sub-grid variations of relative humidity, which is an important quantity for boundary-layer cloud models. The distinct spatial variations of specific humidity are mainly related to synoptic forcing and not to heterogeneity in the surface energy balance.  相似文献   

12.
The performance of a 1-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP) during the non-growing period, when the ground surface was covered with bare soil. Comparisons between simulated and observed soil surface energy balance components as well as soil temperatures and water contents were conducted to validate the soil model. Results show that the soil model could produce good simulations of soil surface temperature, net radiation flux and sensible heat flux against observed values with the RMSE of 1.54oC, 7.71 W m-2 and 27.79 W m-2, respectively. The simulated volumetric soil water content is close to the observed values at various depths with the maximal difference between them being 0.03. Simulated latent heat and ground heat fluxes have relatively lower errors in relative to net radiation and sensible heat flux. In conclusion, the soil model has good capacity to simulate the bare soil surface energy balance at the Tongyu cropland station and needs to be further tested in longer period and at more sites in semiarid areas.  相似文献   

13.
A method is considered for space-time refinement of surface air temperature obtained from the atmospheric general circulation model (GCM) of the Hydrometeorological Center of Russia over a limited area by means of use of a complex of the atmospheric boundary layer models and surface heat and water budget model. The latter describes all major processes of heat and water exchange at the underlying surface and within the soil and vegetation using 14 external parameters for different types of landscapes and soils. The side and upper boundary conditions for the local model are provided from the GCM model. Different statistical estimates of the modeling results show possibility and reliability of the refinement for time changes of the quantity under calculation as well as for development of averaged fields reflecting small-scale inhomogeneities of the landscape.  相似文献   

14.
B. Yu  G. J. Boer 《Climate Dynamics》2006,26(7-8):801-821
Based on the surface energy budget, the sea surface temperature (SST) variance is related to the product of three factors: the sum of the variances of surface radiative and turbulent energy fluxes and of ocean heat transport, an efficiency factor depending on the covariances among them, and a transfer factor involving the persistence of surface temperature via its lagged autocorrelation. These quantities are analyzed for current climate conditions based on results from the NCEP/NCAR reanalyses and a simulation with the CCCma coupled climate model. Potential changes with climate change are considered based on two quasi-equilibrium climate change integrations for which the forcing has been stabilized at years 2050 and 2100 values of the IS92a forcing scenario. The surface energy fluxes, which contribute to the variance of SST, are similar in the modelled and reanalyzed atmosphere but modelled temperature variance is conditioned on the thickness of the upper ocean model layer. Changes of SST variance with global warming show broad scale patterns with decreases in the tropical central-eastern Pacific and the northern extra-tropical Pacific, and increases in both the sub-tropical Pacific and mid-latitudes of the North Atlantic. The changes in SST variance are not associated only with changes in the variances of surface energy fluxes/transports but also with changes in the covariances among them and by changes in the temperature autocorrelation structure.  相似文献   

15.
A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.  相似文献   

16.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

17.
The effects of small fractions ( < 30%) of open water covering a grid element are currently neglected even in atmospheric general circulation models (AGCMs) which incorporate complex land surface parameterization schemes. Here, a method for simulating sub-grid scale open water is proposed which permits any existing land surface model to be modified to account for open water. This new parameterization is tested as an addition to an advanced land surface scheme and, as expected, is shown to produce general increases in the surface latent heat flux at the expense of the surface sensible heat flux. Small changes in temperature are associated with this change in the partitioning of available energy which is driven by an increase in the wetness of the grid element. The sensitivity of the land surface to increasing amounts of open water is dependent upon the type of vegetation represented. Dense vegetation (with a high leaf area index) is shown to complicate the apparently simple model sensitivity and indicates that more advanced methods of incorporating open water into AGCMs need to be considered and compared against the parameterization suggested here. However, the sensitivity of one land surface model to incorporating open water is large enough to warrant consideration of its incorporation into climate models.  相似文献   

18.
We examine the space–time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space–time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space–time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor’s hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.  相似文献   

19.
An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio (h/w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.  相似文献   

20.
半干旱地区吉林通榆"干旱化和有序人类活动"长期观测实验   总被引:38,自引:10,他引:28  
简单介绍了吉林通榆"干旱化和有序人类活动"长期观测实验,该实验站同时也是国际协同加强观测计划(CEOP)的地面观测站.分析了2002年10月~2003年3月(CEOP-EOP3)非生长季观测到的近地面层微气象及能量通量资料.结果表明,在非生长季,半干旱地区农田和退化草地下垫面近地面层能量收支基本一致;感热通量占主要地位,占净辐射通量的70%左右;潜热通量及地热流都很小,通常小于30 W m-2.土壤温度日变化主要集中在地表以下20 cm土壤层,20 cm以下土壤温度日变化很小,但存在明显的季节变化.在非生长季,土壤表层10 cm厚度内,草地下垫面土壤体积含水量比农田大;20 cm以下深度土壤体积含水量的日变化很小,同样存在季节变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号