首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Sedimentology》2018,65(3):952-992
Hybrid event beds comprising both clean and mud‐rich sandstone are important components of many deep‐water systems and reflect the passage of turbulent sediment gravity flows with zones of clay‐damped or suppressed turbulence. ‘Behind‐outcrop’ cores from the Pennsylvanian deep‐water Ross Sandstone Formation reveal hybrid event beds with a wide range of expression in terms of relative abundance, character and inferred origin. Muddy hybrid event beds first appear in the underlying Clare Shale Formation where they are interpreted as the distal run‐out of the wakes to flows which deposited most of their sand up‐dip before transforming to fluid mud. These are overlain by unusually thick (up to 4·4 m), coarse sandy hybrid event beds (89% of the lowermost Ross Formation by thickness) that record deposition from outsized flows in which transformations were driven by both substrate entrainment in the body of the flow and clay fractionation in the wake. A switch to dominantly fine‐grained sand was accompanied initially by the arrest of turbulence‐damped, mud‐rich flows with evidence for transitional flow conditions and thick fluid mud caps. The mid and upper Ross Formation contain metre‐scale bed sets of hybrid event beds (21 to 14%, respectively) in (i) upward‐sandying bed set associations immediately beneath amalgamated sheet or channel elements; (ii) stacked thick‐bedded and thin‐bedded hybrid event bed‐dominated bed sets; (iii) associations of hybrid event bed‐dominated bed sets alternating with conventional turbidites; and (iv) rare outsized hybrid event beds. Hybrid event bed dominance in the lower Ross Formation may reflect significant initial disequilibrium, a bias towards large‐volume flows in distal sectors of the basin, extensive mud‐draped slopes and greater drop heights promoting erosion. Higher in the formation, hybrid event beds record local perturbations related to channel switching, lobe relocations and extension of channels across the fan surface. The Ross Sandstone Formation confirms that hybrid event beds can form in a variety of ways, even in the same system, and that different flow transformation mechanisms may operate even during the passage of a single flow.  相似文献   

2.
沉积物重力流流体转化沉积-混合事件层   总被引:3,自引:2,他引:1  
随着浊流和碎屑流理论体系日臻成熟,重力流的流体转化过程逐渐受到重视,而与其相关联的混合事件层概念也应运而生。混合事件层是单次碎屑流或浊流流体转化中的沉积记录,是多种流变学特征的垂向沉积组合。典型混合事件层沉积序列具有五段式的特征(即纯净砂岩段H1、条带状砂岩段H2、黏性碎积岩段H3、波状层理段H4、块状泥岩段H5),其内部通常存在岩性突变界面。混合事件层发育于粗粒三角洲内部、海底扇和水道与舌状体过渡区、舌状体侧缘、远端及限制性的微型盆地边缘地区,其垂向叠置厚度可达数十米。混合事件层的发现对重力流流体转化、重力流沉积物空间流变学性质研究具有重要意义,同时也推动了油气储层构型和非均质性研究,为进一步寻找深水有利储集砂体提供了新思路。混合层地球物理识别方法的建立及其相关概念在湖泊重力流研究中的灵活应用将是下一步的研究方向。  相似文献   

3.
Flows with high suspended sediment concentrations are common in many sedimentary environments, and their flow properties may show a transitional behaviour between fully turbulent and quasi‐laminar plug flows. The characteristics of these transitional flows are known to be a function of both clay concentration and type, as well as the applied fluid stress, but so far the interaction of these transitional flows with a loose sediment bed has received little attention. Information on this type of interaction is essential for the recognition and prediction of sedimentary structures formed by cohesive transitional flows in, for example, fluvial, estuarine and deep‐marine deposits. This paper investigates the behaviour of rapidly decelerated to steady flows that contain a mixture of sand, silt and clay, and explores the effect of different clay (kaolin) concentrations on the dynamics of flow over a mobile bed, and the bedforms and stratification produced. Experiments were conducted in a recirculating slurry flume capable of transporting high clay concentrations. Ultrasonic Doppler velocity profiling was used to measure the flow velocity within these concentrated suspension flows. The development of current ripples under decelerated flows of differing kaolin concentration was documented and evolution of their height, wavelength and migration rate quantified. This work confirms past work over smooth, fixed beds which showed that, as clay concentration rises, a distinct sequence of flow types is generated: turbulent flow, turbulence‐enhanced transitional flow, lower transitional plug flow, upper transitional plug flow and a quasi‐laminar plug flow. Each of these flow types produces an initial flat bed upon rapid flow deceleration, followed by reworking of these deposits through the development of current ripples during the subsequent steady flow in turbulent flow, turbulence‐enhanced transitional flow and lower transitional plug flow. The initial flat beds are structureless, but have diagnostic textural properties, caused by differential settling of sand, silt and cohesive mud, which forms characteristic bipartite beds that initially consist of sand overlain by silt or clay. As clay concentration in the formative flow increases, ripples first increase in mean height and wavelength under turbulence‐enhanced transitional flow and lower transitional plug‐flow regimes, which is attributed to the additional turbulence generated under these flows that subsequently causes greater lee side erosion. As clay concentration increases further from a lower transitional plug flow, ripples cease to exist under the upper transitional plug flow and quasi‐laminar plug flow conditions investigated herein. This disappearance of ripples appears due to both turbulence suppression at higher clay concentrations, as well as the increasing shear strength of the bed sediment that becomes more difficult to erode as clay concentration increases. The stratification within the ripples formed after rapid deceleration of the transitional flows reflects the availability of sediment from the bipartite bed. The exact nature of the ripple cross‐stratification in these flows is a direct function of the duration of the formative flow and the texture of the initial flat bed, and ripples do not form in cohesive flows with a Reynolds number smaller than ca 12 000. Examples are given of how the unique properties of the current ripples and plane beds, developing below decelerated transitional flows, could aid in the interpretation of depositional processes in modern and ancient sediments. This interpretation includes a new model for hybrid beds that explains their formation in terms of a combination of vertical grain‐size segregation and longitudinal flow transformation.  相似文献   

4.
《Sedimentology》2018,65(1):151-190
This study documents the character and occurrence of hybrid event beds (HEBs) deposited across a range of deep‐water sub‐environments in the Cretaceous–Palaeocene Gottero system, north‐west Italy. Detailed fieldwork (>5200 m of sedimentary logs) has shown that hybrid event beds are most abundant in the distal confined basin‐plain domain (>31% of total thickness). In more proximal sectors, hybrid event beds occur within outer‐fan and mid‐fan lobes (up to 15% of total thickness), whereas they are not observed in the inner‐fan channelized area. Six hybrid event bed types (HEB‐1 to HEB‐6) were differentiated mainly on basis of the texture of their muddier and chaotic central division (H3). The confined basin‐plain sector is dominated by thick (maximum 9·57 m; average 2·15 m) and tabular hybrid event beds (HEB‐1 to HEB‐4). Their H3 division can include very large substrate slabs, evidence of extensive auto‐injection and clast break‐up, and abundant mudstone clasts set in a sandy matrix (dispersed clay ca 20%). These beds are thought to have been generated by highly energetic flows capable of delaminating the sea floor locally, and carrying large rip‐up clasts for relatively short distances before arresting. The unconfined lobes of the mid‐fan sector are dominated by thinner (average 0·38 m) hybrid event beds (HEB‐5 and HEB‐6). Their H3 divisions are characterized by floating mudstone clasts and clay‐enriched matrices (dispersed clay >25%) with hydraulically fractionated components (mica, organic matter and clay flocs). These hybrid event beds are thought to have been deposited by less energetic flows that underwent early turbulence damping following incorporation of mud at proximal locations and by segregation during transport. Although there is a tendency to look to external factors to account for hybrid event bed development, systems like the Gottero imply that intrabasinal factors can also be important; specifically, the type of substrate available (muddy or sandy) and where and how erosion is achieved across the system producing specific hybrid event bed expressions and facies tracts.  相似文献   

5.
Sedimentary facies in the distal parts of deep‐marine lobes can diverge significantly from those predicted by classical turbidite models, and sedimentological processes in these environments are poorly understood. This gap may be bridged using outcrop studies and theoretical models. In the Skoorsteenberg Formation (South Africa), a downstream transition from thickly bedded turbidite sandstones to argillaceous, internally layered hybrid beds, is observed. The hybrid beds have a characteristic stratigraphic and spatial distribution, being associated with bed successions which generally coarsen and thicken‐upward reflecting deposition on the fringes of lobes in a dominantly progradational system. Using a detailed characterization of bed types, including grain size, grain‐fabric and mineralogical analyses, a process‐model for flow evolution is developed. This is explored using a numerical suspension capacity model for radially spreading and decelerating turbidity currents. The new model shows how decelerating sediment suspensions can reach a critical suspension capacity threshold beyond which grains are not supported by fluid turbulence. Sand and silt particles, settling together with flocculated clay, may form low yield strength cohesive flows; development of these higher concentration lower boundary layer flows inhibits transfer of turbulent kinetic energy into the upper parts of the flow ultimately resulting in catastrophic loss of turbulence and collapse of the upper part of the flow. Advection distances of the now transitional to laminar flow are relatively long (several kilometres) suggesting relatively slow dewatering (several hours) of the low yield strength flows. The catastrophic loss of turbulence accounts for the presence of such beds in other fine‐grained systems without invoking external controls or large‐scale flow partitioning and also explains the abrupt pinch‐out of all divisions of these sandstones. Estimation of the point of flow transformation is a useful tool in the prediction of heterogeneity distribution in subsurface systems.  相似文献   

6.
The partitioning of different grain-size classes in gravity flow deposits is one of the key characteristics used to infer depositional processes. Turbidites have relatively clean sandstones with most of their clay deposited as part of a mudstone cap or as a distal mudstone layer, whereas sand-bearing debrites commonly comprise mixtures of sand grains and interstitial clay; hybrid event beds develop alternations of clean and dirty (clay-rich) sandstones in varying proportions. Analysis of co-genetic mudstone caps in terms of thickness and composition is a novel approach that can provide new insight into gravity flow depositional processes. Bed thickness data from the ponded Castagnola system show that turbidites contain more clay overall than do hybrid event beds. The Castagnola system is characterized by deposits of two very different petrographic types. Thanks to this duality, analyses of sandstone and mudstone composition allow inference of which proportion of the clay in each of the deposit types was acquired en route. In combination with standard sedimentological observations the new data allow insight into the likely characteristics of their parent flows. Clean turbidites were deposited by lower concentration, long duration, erosive, muddy turbidity currents which were more efficient at fractionating clay particles away from their basal layer. Hybrid event beds were deposited by shorter duration, higher-concentration, less-erosive sandier flows which were less efficient at clay fractionation. The results are consistent with data from other turbidite systems (for example, Marnoso-arenacea). The approach represents a new method to infer the controls on the degree of clay partitioning in gravity flow deposits.  相似文献   

7.
Hybrid event beds form when turbidity currents that transport or locally acquire significant quantities of mud decelerate. The mud dampens turbulence driving flow transformations, allowing both mud and sand to settle into dense, near-bed fluid layers and debris flows. Quantifying details of the mud distribution vertically in what are often complex tiered deposits is critical to reconstructing flow processes and explaining the diverse bed types left by mud-bearing gravity flows. High-resolution X-ray fluorescence core scanning provides continuous vertical compositional profiles that can help to constrain mud distribution at sub-millimetre scale, offering a significant improvement over discrete sampling. The approach is applied here to cores acquired from the Pennsylvanian Ross Sandstone Formation, western Ireland, where a range of hybrid event beds have been identified. Raw X-ray fluorescence counts are calibrated against element concentrations and mineral abundances determined on coincident core plugs, with element and element log-ratios used as proxies to track vertical changes in abundances of quartz, illite (including mica), chlorite and calcite cement. New insights include ‘stepped’ (to higher values) as opposed to ‘saw-tooth’ vertical changes in mud content and the presence of compositional banding that would otherwise be overlooked. Hybrid event beds in basin floor sheets that arrived ahead of the prograding fan system have significantly cleaner sandy components than those in mid-fan lobes. The latter may imply that the heads of the currents emerging from mid-fan channels entrained significant mud immediately before they collapsed. Many of the H3 debrites are bipartite with a sandier H3a division attributed to re-entrainment and mixing of a trailing debris or fluid mud flow (H3b) with sand left by the forward part of the flow. Hybrid event bed structure may thus partly reflect substrate interaction and mixing during deposition, and the texture of the bed divisions may not simply mirror those in the suspensions from which they formed.  相似文献   

8.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

9.
鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型   总被引:1,自引:0,他引:1  
以鄂尔多斯盆地上三叠统延长组长7段取芯段为主要研究对象,以详细的岩芯观察为基础,以Z43井为例,研究鄂尔多斯盆地延长组长7段深水重力流沉积类型及其特征。研究结果表明,研究区主要发育砂质碎屑流沉积、低密度浊流沉积及混合事件层三种沉积类型。砂质碎屑流沉积整体呈块状,岩性为中—细砂岩,内部可见多个接触面,为多套砂质碎屑流沉积垂向叠置形成。低密度浊流沉积中大部分为中—薄层的正粒序砂岩垂向叠置而成,部分泥质含量较高,表现出砂泥互层的特征。混合事件层主要由下部干净的块状细砂岩与上部富含变形泥岩撕裂屑的砂质泥岩或泥质砂岩成对组合形成,其成因为浊流流动过程中侵蚀泥质基底,黏土物质或泥质碎屑的混入导致浊流向泥质碎屑流转化,最终形成下部浊流沉积上部泥质碎屑流沉积的混合事件层。相近位置不同深度不同类型的深水重力流沉积垂向叠置,指示了复杂多变的重力流流体演化过程。对重力流沉积类型的准确认识,能进一步促进对深水重力流流体转化过程的理解,明确深水重力流沉积分布,为鄂尔多斯盆地深水重力流沉积及常规与非常规油气勘探与开发提供理论指导。  相似文献   

10.
Co‐genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud‐poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud‐poor sandstone, siltstone and mudstone show features indicating progressive layer‐by‐layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co‐genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin‐plain settings. Co‐genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud‐rich sea‐floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (> 26 × 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run‐out on low‐gradient sea floor (< 0·1°) may simply be due to low yield strength (? 50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events.  相似文献   

11.
On the basis of detailed sedimentological investigation, three types of hybrid event beds (HEBs) together with debrites and turbidites were distinguished in the Lower Cretaceous sedimentary sequence on the Lingshan Island in the Yellow Sea, China. HEB 1, with a total thickness of 63–80 cm and internal bipartite structures, is characterised by a basal massive sandstone sharply overlain by a muddy sandstone interval. It is interpreted to have been formed by particle rearrangement at the base of cohesive debris flows. HEB 2, with a total thickness of 10–71 cm and an internal tripartite structure, is characterised by a normal grading sandstone base, followed by muddy siltstone middle unit and capped with siltstones; the top unit of HEB 2 may in places be partly or completely eroded. The boundary between the lowest unit and the middle unit is gradual, whereas that between the middle unit and the top unit is sharp. HEB 2 may be developed by up-dip muddy substrate erosion. HEB 3, with a total thickness up to 10 cm and an internal bipartite structure, is characterised by a basal massive sandstone sharply overlain by a muddy siltstone interval. The upper unit was probably deposited by cohesive debris flow with some plant fragments and rare mud clasts. HEB 3 may be formed by the deceleration of low-density turbidity currents. The distribution of HEBs together with debrites and turbidites implies a continuous evolution process of sediment gravity flows: debris flow → hybrid flow caused by particle rearrangement → high-density turbidity current → hybrid flow caused by muddy substrate erosion → low-density turbidity current → hybrid flow caused by deceleration.  相似文献   

12.
A common facies observed in deep‐water slope and especially basin‐floor rocks of the Neoproterozoic Windermere Supergroup (British Columbia, Canada) is structureless, coarse‐tail graded, medium‐grained to coarse‐grained sandstone with from 30% to >50% mud matrix content (i.e. matrix‐rich). Bed contacts are commonly sharp, flat and loaded. Matrix‐rich sandstone beds typically form laterally continuous units that are up to several metres thick and several tens to hundreds of metres wide, and commonly adjacent to units of comparatively matrix‐poor, scour‐based sandstone beds with large tabular mudstone and sandstone clasts. Matrix‐rich units are common in proximal basin‐floor (Upper Kaza Group) deposits, but occur also in more distal basin‐floor (Middle Kaza Group) and slope (Isaac Formation) deposits. Regardless of stratigraphic setting, matrix‐rich units typically are directly and abruptly overlain by architectural elements comprising matrix‐poor coarse sandstone (i.e. channels and splays). Despite a number of similarities with previously described matrix‐rich beds in the literature, for example slurry beds, linked debrites and co‐genetic turbidites, a number of important differences exist, including the stratal make‐up of individual beds (for example, the lack of a clean sandstone turbidite base) and their stratigraphic occurrence (present throughout base of slope and basin‐floor strata, but most common in proximal lobe deposits) and accordingly suggest a different mode of emplacement. The matrix‐rich, poorly sorted nature of the beds and the abundance and size of tabular clasts in laterally equivalent sandstones imply intense upstream scouring, most probably related to significant erosion by an energetic plane‐wall jet or within a submerged hydraulic jump. Rapid energy loss coupled with rapid charging of the flow with fine‐grained sediment probably changed the rheology of the flow and promoted deposition along the margins of the jet. Moreover, these distinctive matrix‐rich strata are interpreted to represent the energetic initiation of the local sedimentary system, most probably caused by a local upflow avulsion.  相似文献   

13.
The dominance of isotropic hummocky cross‐stratification, recording deposition solely by oscillatory flows, in many ancient storm‐dominated shoreface–shelf successions is enigmatic. Based on conventional sedimentological investigations, this study shows that storm deposits in three different and stratigraphically separated siliciclastic sediment wedges within the Lower Cretaceous succession in Svalbard record various depositional processes and principally contrasting sequence stratigraphic architectures. The lower wedge is characterized by low, but comparatively steeper, depositional dips than the middle and upper wedges, and records a change from storm‐dominated offshore transition – lower shoreface to storm‐dominated prodelta – distal delta front deposits. The occurrence of anisotropic hummocky cross‐stratification sandstone beds, scour‐and‐fill features of possible hyperpycnal‐flow origin, and wave‐modified turbidites within this part of the wedge suggests that the proximity to a fluvio‐deltaic system influenced the observed storm‐bed variability. The mudstone‐dominated part of the lower wedge records offshore shelf deposition below storm‐wave base. In the middle wedge, scours, gutter casts and anisotropic hummocky cross‐stratified storm beds occur in inferred distal settings in association with bathymetric steps situated across the platform break of retrogradationally stacked parasequences. These steps gave rise to localized, steeper‐gradient depositional dips which promoted the generation of basinward‐directed flows that occasionally scoured into the underlying seafloor. Storm‐wave and tidal current interaction promoted the development and migration of large‐scale, compound bedforms and smaller‐scale hummocky bedforms preserved as anisotropic hummocky cross‐stratification. The upper wedge consists of thick, seaward‐stepping successions of isotropic hummocky cross‐stratification‐bearing sandstone beds attributed to progradation across a shallow, gently dipping ramp‐type shelf. The associated distal facies are characterized by abundant lenticular, wave ripple cross‐laminated sandstone, suggesting that the basin floor was predominantly positioned above, but near, storm‐wave base. Consequently, shelf morphology and physiography, and the nature of the feeder system (for example, proximity to deltaic systems) are inferred to exert some control on storm‐bed variability and the resulting stratigraphic architecture.  相似文献   

14.
Dune stratification types, which include grainfall, grainflow and ripple lamination, provide a record of the fine‐scale processes that deposited sediment on palaeo‐dune foresets. While these facies are relatively easy to distinguish in some cross‐bedded sandstones, for others – like the Permian Coconino Sandstone of northern and central Arizona – discrete stratification styles are hard to recognize at the bedding scale. Furthermore, few attempts have been made to classify fine‐scale processes in this sandstone, despite its renown as a classic aeolian dune deposit and Grand Canyon formation. To interpret depositional processes in the Coconino Sandstone, cross‐bed facies were characterized using a suite of sedimentary textures and structures. Bedding parameters were described at multiple scales via a combination of field and laboratory methods, including annotated outcrop photomosaics, strike and dip measurements, sandstone disaggregation and laser‐diffraction particle analysis, high‐resolution scans of thin sections, and scanning electron microscopy. Cross‐beds were observed to be laterally extensive along‐strike, with most dip angles ranging from the mid‐teens to mid‐twenties. While some cross‐bed sets are statistically coarser near their bases, others exhibit no significant vertical sorting trends. Both massive and laminated textures are visible in high‐resolution scans of thin sections, but laminae contacts are commonly indistinct, making normal and reverse grading difficult to define. Diagenetic features, such as stylolite seams and large pores, are also present in some samples and might indicate alteration of original textures like detrital clay laminae and carbonate minerals. Observed textures and sedimentary structures suggest that the cross‐beds may consist of grainflow and grainfall deposits, but these remain difficult to differentiate at outcrop and thin‐section scales. This characterization of fine‐scale processes will play a critical part in the development of depositional models for the Coconino Sandstone and elucidate interpretations for similar cross‐bedded formations.  相似文献   

15.
A. Guy Plint 《Sedimentology》2014,61(3):609-647
Determining sediment transport direction in ancient mudrocks is difficult. In order to determine both process and direction of mud transport, a portion of a well‐mapped Cretaceous delta system was studied. Oriented samples from outcrop represent prodelta environments from ca 10 to 120 km offshore. Oriented thin sections of mudstone, cut in three planes, allowed bed microstructure and palaeoflow directions to be determined. Clay mineral platelets are packaged in equant, face‐face aggregates 2 to 5 μm in diameter that have a random orientation; these aggregates may have formed through flocculation in fluid mud. Cohesive mud was eroded by storms to make intraclastic aggregates 5 to 20 μm in diameter. Mudstone beds are millimetre‐scale, and four microfacies are recognized: Well‐sorted siltstone forms millimetre‐scale combined‐flow ripples overlying scoured surfaces; deposition was from turbulent combined flow. Silt‐streaked claystone comprises parallel, sub‐millimetre laminae of siliceous silt and clay aggregates sorted by shear in the boundary layer beneath a wave‐supported gravity flow of fluid mud. Silty claystone comprises fine siliceous silt grains floating in a matrix of clay and was deposited by vertical settling as fluid mud gelled under minimal current shear. Homogeneous clay‐rich mudstone has little silt and may represent late‐stage settling of fluid mud, or settling from wave‐dissipated fluid mud. It is difficult or impossible to correlate millimetre‐scale beds between thin sections from the same sample, spaced only ca 20 mm apart, due to lateral facies change and localized scour and fill. Combined‐flow ripples in siltstone show strong preferred migration directly down the regional prodelta slope, estimated at ca 1 : 1000. Ripple migration was effected by drag exerted by an overlying layer of downslope‐flowing, wave‐supported fluid mud. In the upper part of the studied section, centimetre‐scale interbeds of very fine to fine‐grained sandstone show wave ripple crests trending shore normal, whereas combined‐flow ripples migrated obliquely alongshore and offshore. Storm winds blowing from the north‐east drove shore‐oblique geostrophic sand transport whereas simultaneously, wave‐supported flows of fluid mud travelled downslope under the influence of gravity. Effective wave base for sand, estimated at ca 40 m, intersected the prodelta surface ca 80 km offshore whereas wave base for mud was at ca 70 m and lay ca 120 km offshore. Small‐scale bioturbation of mud beds co‐occurs with interbedded sandstone but stratigraphically lower, sand‐free mudstone has few or no signs of benthic fauna. It is likely that a combination of soupground substrate, frequent storm emplacement of fluid mud, low nutrient availability and possibly reduced bottom‐water oxygen content collectively inhibited benthic fauna in the distal prodelta.  相似文献   

16.
The Marnoso Arenacea Formation provides the most extensive correlation of individual flow deposits (beds) yet documented in an ancient turbidite system. These correlations provide unusually detailed constraints on bed shape, which is used to deduce flow evolution and assess the validity of numerical and laboratory models. Bed volumes have an approximately log‐normal frequency distribution; a small number of flows dominated sediment supply to this non‐channelized basin plain. Turbidite sandstone within small‐volume (<0·7 km3) beds thins downflow in an approximately exponential fashion. This shape is a property of spatially depletive flows, and has been reproduced by previous mathematical models and laboratory experiments. Sandstone intervals in larger‐volume (0·7–7 km3) beds have a broad thickness maximum in their proximal part. Grain‐size trends within this broad thickness maximum indicate spatially near‐uniform flow for distances of ∼30 km, although the flow was temporally unsteady. Previous mathematical models and laboratory experiments have not reproduced this type of deposit shape. This may be because models fail to simulate the way in which near bed sediment concentration tends towards a constant value (saturates) in powerful flows. Alternatively, the discrepancy may be the result of relatively high ratios of flow thickness and sediment settling velocity in submarine flows, together with very gradual changes in sea‐floor gradient. Intra‐bed erosion, temporally varying discharge, and reworking of suspension fallout as bedload could also help to explain the discrepancy in deposit shape. Most large‐volume beds contain an internal erosion surface underlain by inversely graded sandstone, recording waxing and waning flow. It has been inferred previously that these characteristics are diagnostic of turbidites generated by hyperpycnal flood discharge. These turbidites are too voluminous to have been formed by hyperpycnal flows, unless such flows are capable of eroding cubic kilometres of sea‐floor sediment. It is more likely that these flows originated from submarine slope failure. Two beds comprise multiple sandstone intervals separated only by turbidite mudstone. These features suggest that the submarine slope failures occurred as either a waxing and waning event, or in a number of stages.  相似文献   

17.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

18.
重力流混合事件层在陆相湖盆广泛发育,其形成和分布对理解重力流沉积演化过程及重力流沉积常规与非常规油气勘探开发意义重大.以涠西南凹陷流沙港组一段和鄂尔多斯盆地延长组7段重力流沉积为研究对象,分析湖盆重力流混合事件层的沉积特征、类型、成因及沉积模式,并进一步探讨其地质意义.湖盆主要发育滑动、滑塌重力驱动块体搬运沉积和砂质碎屑流、泥质碎屑流、高密度浊流和低密度浊流等重力流流体沉积,同时广泛发育重力流混合事件层沉积.湖盆重力流混合事件层包含多层结构、双层结构和频繁互层三种大的类型;其中,双层结构的重力流混合事件层进一步根据上下两个沉积单元厚度的差异可细分为两个亚类.多层结构的混合事件层主要为流体侵蚀或砂体液化成因,多发育于混合事件层沉积近端;双层结构与频繁互层结构的混合事件层主要为流体减速膨胀、泥质碎屑流中碎屑颗粒的差异沉降成因,多发育于混合事件层沉积远端.相同沉积单元组成的沉积层在垂向上的规律叠置是岩芯中识别重力流混合事件层沉积的可靠依据;在未明确其沉积过程的情况下可能会导致沉积信息的错误解读.同时,重力流混合事件层的发育会导致重力流沉积非均质性增强,不利于常规油气的储集;但是,重力流混合事件层形成的细粒沉积物是非常规油气"甜点"区发育的优势沉积岩相组合类型.  相似文献   

19.
The Marnoso‐arenacea Formation in the Italian Apennines is the only ancient rock sequence where individual submarine sediment density flow deposits have been mapped out in detail for over 100 km. Bed correlations provide new insight into how submarine flows deposit sand, because bed architecture and sandstone shape provide an independent test of depositional process models. This test is important because it can be difficult or impossible to infer depositional process unambiguously from characteristics seen at just one outcrop, especially for massive clean‐sandstone intervals whose origin has been controversial. Beds have three different types of geometries (facies tracts) in downflow oriented transects. Facies tracts 1 and 2 contain clean graded and ungraded massive sandstone deposited incrementally by turbidity currents, and these intervals taper relatively gradually downflow. Mud‐rich sand deposited by cohesive debris flow occurs in the distal part of Facies tract 2. Facies tract 3 contains clean sandstone with a distinctive swirly fabric formed by patches of coarser and better‐sorted grains that most likely records pervasive liquefaction. This type of clean sandstone can extend for up to 30 km before pinching out relatively abruptly. This abrupt pinch out suggests that this clean sand was deposited by debris flow. In some beds there are downflow transitions from turbidite sandstone into clean debrite sandstone, suggesting that debris flows formed by transformation from high‐density turbidity currents. However, outsize clasts in one particular debrite are too large and dense to have been carried by an initial turbidity current, suggesting that this debris flow ran out for at least 15 km. Field data indicate that liquefied debris flows can sometimes deposit clean sand over large (10 to 30 km) expanses of sea floor, and that these clean debrite sand layers can terminate abruptly.  相似文献   

20.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号