首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The violent free-surface motions interacting with structures are investigated using the moving particle semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow simulation. In the present numerical method, a more efficient algorithm for Lagrangian moving particles is used for solving various highly nonlinear free-surface problems without using the Eulerian approach or the grid system. Therefore, the convection terms and time derivatives in the Navier–Stokes equation can be calculated more directly without any numerical diffusion, instabilities, or topological failure. In particular, the MPS method is applied to the simulation of liquid-entry and slamming problems, such as wet-drop (liquid–liquid collision) tests in an LNG tank and slamming loads (solid–liquid collision) on rigid plates with various incident angles. The numerical results are in good agreement with available experimental data.  相似文献   

2.
《Coastal Engineering》2004,51(7):557-579
In this paper, a Reynolds Averaged Navier–Stokes (RANS) model was developed to simulate the vortex generation and dissipation caused by progressive waves passing over impermeable submerged double breakwaters. The dynamics of the turbulence are described by introducing a kɛ model with Boussinesq closure. The Height Function (HF) is implemented to define the free-surface configuration. The governing equations are discretized by means of a finite volume method based on a staggered grid system with variable width and height. The feasibility of the numerical model was verified through a series of comparisons of numerical results with the existing analytical solutions and the experimental data. The good agreements demonstrate the satisfactory performance of the developed numerical model. The flow separation mechanism both near the upstream and the downstream edges of the obstacles demonstrates the physical and expected nature of development of the flow. The present model provides an accurate and efficient tool for the simulation of flow field and wave transformation near coastal structures without breaking.  相似文献   

3.
A new adaptive Cartesian-grid for the CIP (constrained interpolation profile) method is proposed and applied to two-dimensional numerical simulations of violent free-surface flows. The CCUP (CIP combined and unified procedure) method is employed and combined with this adaptive Cartesian-grid for robust and efficient computation. This adaptive grid is capable of tracking regions where flows vary violently, and a much finer grid is then concentrated automatically on these regions to adapt to the violent changing of the flow. Unlike the abacus-like Soroban grid which is an adaptive meshless grid with complicated algorithms and inefficiency of evaluation of frequently computed spatial derivatives, the present approach not only simplifies computational algorithm but also enhances efficiency of frequently-computed spatial derivatives. It is also different from most of the remeshing schemes that no additional CPU-time for the value-mapping from the old grid to the new grid is taken in this adaptive grid system provided that the advection velocity is interpolated, since the value-mapping process is accomplished simultaneously within the advection process. To validate the accuracy and efficiency of this newly-proposed CFD model, several two-dimensional benchmark problems are performed, and the results are compared with experimental measurements and other published numerical results. Numerical simulations show that the proposed numerical model is robust, accurate, and efficient for strongly nonlinear free-surface flows.  相似文献   

4.
In this paper, a two-fluid model of turbulent two-phase flow is used to simulate turbulent stratified flows. This is a unified multi-fluid model for the motion of each phase in the flow, whose turbulent transport is closed by a two-phase k– model. The exchanges of mass, momentum and energy between the two phases are fully accounted for in the simulation. For illustration, a case of turbulent stratified flow with strong buoyancy effects, for which extensive experimental data are available, is selected for examination. It is shown that the numerical results agree well with the experimental data.  相似文献   

5.
Numerical simulations have been carried out to determine the incompressible free surface flow around a VLCC hull form for which experimental results are available. A commercial viscous flow finite volume code using the two-phase Eulerian–Eulerian fluid approach and a potential flow code based on the Rankine source method have been used in this study. The simulation conditions are the ones for which experimental results exist. The shear stress transport (SST) turbulence model has been used in the viscous flow code. A tetrahedral unstructured grid was used with the viscous flow code for meshing the computational domain, while quadrilateral structural patches were used with the potential flow code for meshing the VLCC hull surface and the water surface around it. The results compare well with the available experimental data and they allow an understanding of the differences that can be expected from viscous and potential flow methods as a result of their different mathematical formulations, which make their complementary application useful for determining the total ship resistance.  相似文献   

6.
A numerical method for non-hydrostatic, free-surface, irrotational flow governed by the nonlinear shallow water equations including the effects of vertical acceleration is presented at the aim of studying surf zone phenomena. A vertical boundary-fitted grid is used with the water depth divided into a number of layers. A compact finite difference scheme is employed for accurate computation of frequency dispersion requiring a limited vertical resolution and hence, capable of predicting the onset of wave breaking. A novel wet–dry algorithm is applied for a proper handling of moving shoreline. Mass and momentum are strictly conserved at discrete level while the method only dissipates energy in the case of wave breaking. The numerical results are verified with a number of tests and show that the proposed model using two layers without ad-hoc assumptions enables to resolve propagating nonlinear shoaling, breaking waves and wave run-up within the surf and swash zones in an efficient manner.  相似文献   

7.
An extensive experimental and computational investigation of the combined and separate effects of free surface and body on the lift characteristics of a pair of fins attached to a strut and fin alone is conducted. The results reveal that the free-surface effect becomes significant when the depth of submergence to chord ratio (H/c) is less than three. The effect of the strut is also realized for shallower depth of submergence of the fins through free-surface deformation leading to a significant change in the incidence angle of the flow to the fins. The numerical results based on the Higher Order Boundary Element Method with the linearized free-surface condition show good agreement with the experimental results for fin (foil) alone even at shallow submergence, but some discrepancies appear for the fin attached to the strut at higher speeds mostly due to the neglect of the nonlinear free-surface effect.  相似文献   

8.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

9.
The objective of the present study is to develop a volume of fluid (VOF)-based two-phase flow model and to discuss the applicability of the model to the simulation of wave–structure interactions. First, an overview of the development of VOF-type models for applications in the field of coastal engineering is presented. The numerical VOF-based two-phase flow model has been developed and applied to the simulations of wave interactions with a submerged breakwater as well as of wave breaking on a slope. Numerical results are then compared with laboratory experimental data in order to verify the applicability of the numerical model to the simulations of complex interactions of waves and permeable coastal structures, including the effects of wave breaking. It is concluded that the two-phase flow model with the aid of the advanced VOF technique can provide with acceptably accurate numerical results on the route to practical purposes.  相似文献   

10.
柔性网衣作为渔业养殖的重要组成部分,其水动力的计算分析对网箱的安全使用至关重要。基于桁架模型和多孔介质模型对柔性网衣和流场单向耦合计算的数值模拟方法进行了研究。通过code_aster软件基于桁架模型计算出网衣变形后节点坐标和网衣受力,然后将节点坐标导入OpenFOAM识别出网衣变形后的多孔介质区域,并基于多孔介质模型模拟水流作用下网衣周围的流场和计算网衣的受力。为了验证模型的正确性,将不同工况对圆形网衣的数值模拟结果与物理试验数据进行比较,包括code_aster中计算的网衣变形形状、OpenFOAM模拟的网衣周围流场以及在code_aster和OpenFOAM中计算的网衣受力。计算结果表明,圆形网衣在单纯来流下变形明显,与试验结果保持一致,证明了网衣变形和水动力单向耦合方法的准确性。  相似文献   

11.
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C -unstructured non-orthogonal grid in the horizontal direction and z -level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohai Sea. The results are in good agreement both with the analytical solutions and measurement results.  相似文献   

12.
A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger.  相似文献   

13.
Computer codes implementing three different numerical methods for the prediction of ship squat at transcritical speeds in shallow open-water are tested. SlenderFlow is a potential flow code specifically for ships in very shallow water, based on partially dispersive slender body theory. Flotilla is a potential flow code based on fully dispersive thin-ship theory. Rapid is a general nonlinear free-surface panel code. Code predictions of transcritical sinkage, trim and resistance in laterally unrestricted water were compared to the experimental results of Graff (1964) for two Taylor series hulls in a finite-width towing tank. Once tank width effects were accounted for, each of the three codes was found to give good predictions within the valid range of the underlying theory. A simple method for estimating transcritical wave resistance from trim is presented.  相似文献   

14.
A high-order finite-difference method solution of the linearized, potential flow, seakeeping problem for a ship at steady forward speed was recently presented by Amini-Afshar et al. [1,2]. In this paper, we provide a detailed matrix-based eigenvalue stability analysis of this model, highlighting the sources of instability and the effects of possible remedies. In particular, we illustrate how both boundary treatment and grid stretching are important factors which are not typically captured by a von Neumann-type analysis. The new analysis shows that when grid stretching is used together with centered finite difference schemes, the method is generally unstable. The source of the instability can in some cases be traced to an effective downwinding of the convective terms. Stable solutions can be obtained either by introducing upwind-biased schemes for computing the convective derivatives on the free-surface, or by application of a mild filter at each time-step. A second source of instability is associated with the treatment of the convective derivatives of the free-surface elevation at points close to the domain boundaries. Here it is necessary to consider whether the surrounding fluid points lie in an upwind or a downwind direction. For upwinded points, ordinary one-sided differencing can be used, but for downwinded points we instead impose a Neumann-type boundary condition derived from the body and free-surface boundary conditions. As an example application to complement those already given in [1], [2], the method is applied to solve the steady wave resistance problem and comparison is made to reference solutions for a two-dimensional floating cylinder and a submerged sphere. Estimates of the wave resistance of the Wigley hull are also compared with experimental measurements.  相似文献   

15.
The results of the three-dimensional numerical simulation for the study of the stratification effect and wave processes associated with it on the drag of the underwater part of the hummocked ice are considered. The numerical model is based on the sampling of equations on a rectangular grid using the immersed boundary method that makes it possible to explicitly describe the interaction of moving ice with a stratified flow. The dependence of the drag force on the Froude number was established based on these calculations. This dependence has expressed points of maximum and minimum. The form of this dependence is common for the considered models of ice keels. The obtained estimations of drag force consistent with the known results of laboratory experiments show the need for the construction of parametrizations of the drag coefficient on the ice–ocean boundary, taking into account wave effects.  相似文献   

16.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

17.
强潮河口三维无结构网格盐度数学模型   总被引:3,自引:0,他引:3  
采用平面无结构网格和垂向直接分层,建立了强潮河口盐度三维斜压力数学模型。无结构网格使模型能够适应河口复杂的边界,并可以根据需要进行局部加密。Casulli的半隐式法离散模型水位梯度和垂项紊动扩散项,克服了水位梯度和垂项紊动扩散对模型稳定性的影响,Semi-Lagrangian法用于模型对流项的离散,使模型具有"无条件"稳定性。采用水池风生流和盐度异重流算例检验了模型,并应用模型模拟了强潮河口(瓯江口)的潮流盐度运动,计算和实测结果进行比较,表明该模型是准确、可靠的。  相似文献   

18.
The linearized potential flow approximation for the forward speed radiation problem is solved in the time domain using a high-order finite difference method. The finite-difference discretization is developed on overlapping, curvilinear body-fitted grids. To ensure numerical stability, the convective derivatives in the free-surface boundary conditions are treated using an upwind-biased stencil. Instead of solving for the radiation impulse response functions, a pseudo-impulsive Gaussian type displacement is employed in order to tailor the frequency-content to the discrete spatial resolution. Frequency-domain results are then obtained from a Fourier transform of the force and motion signals. In order to make a robust Fourier transform, and capture the response around the critical frequency, the tail of the force signal is asymptotically extrapolated assuming a linear decay rate. Fourth-order convergence of the calculations on simple geometries is demonstrated, along with a nearly linear scaling of the solution effort with increasing grid resolution. The code is validated by comparison with analytical and semi-analytical solutions using submerged and floating closed-form geometries. Calculations are also made for a modern bulk carrier, and good agreement is found with experimental measurements.  相似文献   

19.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   

20.
In this work, a combined immersed boundary (IB) and volume of fluid (VOF) methodology is developed to simulate the interactions of free-surface waves and submerged solid bodies. The IB method is used to account for the no-slip boundary condition at solid interfaces and the VOF method, utilizing a piecewise linear interface calculation, is employed to track free surfaces. The combined model is applied in several case studies, including the propagation of small-amplitude progressive waves over a submerged trapezoidal dike, a solitary wave traveling over a submerged rectangular object, and wave generation induced by a moving bed. Numerical results depicting the free-surface evolutions and velocity fields are in good agreement with either experimental data or numerical results obtained by other researchers. In addition, the simplification of the initial free-surface deformation used in most tsunami earthquake source study is justified by the present model application. The methodology presented in the paper serves as a good tool for solving many practical problems involving free surfaces and complex boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号