首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills.  相似文献   

2.
Several lines of isotopic evidence - the most direct of which is from Hadean Jack Hills zircons - suggest a very early history of crust formation on Earth that began by about 4.5 Ga. To constrain both the fate of the reservoir for this crust and the nature of crustal evolution in the sediment source region of the Jack Hills, Western Australia, during the early Archean, we report here initial 176Hf/177Hf ratios and δ18O systematics for <4 Ga Jack Hills zircons. In contrast to the significant number of Hadean zircons which contain highly unradiogenic 176Hf/177Hf requiring a near-zero Lu/Hf reservoir to have separated from the Earth’s mantle by 4.5 Ga, Jack Hills zircons younger than ca. 3.6 Ga are more radiogenic than -13ε (CHUR) at 3.4 Ga in contrast to projected values at 3.4 Ga of -20ε for the unradiogenic Hadean reservoir indicating that some later juvenile addition to the crust is required to explain the more radiogenic younger zircons. The shift in the Lu-Hf systematics together with a narrow range of mostly mantle-like δ18O values among the <3.6 Ga zircons (in contrast to the spread towards sedimentary δ18O among Hadean samples) suggests a period of transition between 3.6 and 4 Ga in which the magmatic setting of zircon formation changed and the highly unradiogenic low Lu/Hf Hadean crust ceased to be available for intracrustal reworking. Constraining the nature of this transition provides important insights into the processes of crustal reworking and recycling of the Earth’s Hadean crust as well as early Archean crustal evolution.  相似文献   

3.
For the first time in Russia, a Hadean zircon grain with an age of 3.94 Ga (ID-TIMS) has been discovered in high-aluminous garnet granulites of the Aldan Shield among the U–Pb zircons with an age from 1.92 Ga. In this connection, the problems of its parental source, the petrogenesis of granulites that captured this zircon, and the mechanism of occurrence of these deep rocks in the upper horizons of the crust have been solved. The comparison of the geochemistry of garnet granulites and the middle crust has shown that the granulites are enriched in the entire range of rare-earth elements (except for the Eu minimum), as well as in Al2O3, U, and Th and are depleted in the most mobile elements (Na, Ca, Sr). In the upper part of the allitic weathering zone of the middle crust, which formed under conditions of arid climate, this zircon grain was originated from the weathered granites from the middle crust. In the latter case, they were empleced discretely in the upper granite–gneiss crust under high pressure conditions (the rutile age is 1.83–1.82 Ga). The zircon with an age of 3.94 Ga is comparable to the Hadean zircons from orthogneisses of the Acasta region (Canadian Shield, 4.03–3.94 Ga).  相似文献   

4.
Lower ocean crust is primarily gabbroic, although 1–2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater–rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform δ18O with an average value of 5.2 ± 0.5‰ (2SD). The average δ18O(Zrc) would be in magmatic equilibrium with unaltered MORB [δ18O(WR) ~ 5.6–5.7‰], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured δ18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like δ18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water–rock interactions that alter the protolith δ18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated δ18O (6.0–7.5‰), but such values have not been identified in any zircons from the large sample suite examined here. The difference in δ18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.  相似文献   

5.
It has been argued that >4.0 Ga detrital zircons preserved in sediments of the Jack Hills, western Australia, preserve evidence for a well‐developed continental crust on the Earth at 4.4–4.5 Ga ago. Here, it is shown that there are geochemical similarities between the Jack Hills zircons and the zircons found in trondhjemites in ophiolite sequences, suggesting that the Earth's first felsic crust may have formed in a manner analogous to modern ophiolitic trondhjemites. The trondhjemites of the Oman ophiolite were formed by the hydrous partial melting of the upper (hornblende) gabbros in the roof‐zone of an axial magma chamber. A similar hydrous melting of a mafic protolith may have operated during the Hadean, to create small volumes of felsic rocks within a dominantly mafic crust, obviating the need to postulate a felsic continental crust at 4.4–4.5 Ga.  相似文献   

6.
冀东地区始太古代早期—冥古宙锆石发现   总被引:1,自引:0,他引:1  
最古老大陆地壳的形成、组成和演化是阐释地球壳幔物质分异、构造演化的逻辑起点。由于长期地质作用改造,地球上保存的古老陆壳物质十分稀少,寻找和研究都极具挑战性。在冀东卢龙喇叭山地区,早期研究发现含有大量3.4~3.8 Ga碎屑锆石的铬云母石英岩,岩石特征和碎屑锆石年龄分布与迁安黄柏峪地区的铬云母石英岩十分类似。本文对喇叭山地区与铬云母石英岩共生的变质碎屑沉积岩进行了锆石定年。黑云斜长片麻岩(J2006)94个数据点分析,碎屑锆石普遍显示强烈铅丢失,数据点主要沿上交点年龄为~3.8 Ga和~3.45 Ga的两条不一致线分布。获得3084±6 Ma的变质锆石年龄。长石石英岩(J2009)68个数据点分析,除大量3.4~3.8 Ga碎屑锆石外,还发现3.92~4.0 Ga碎屑锆石(6颗)。始太古代早期—冥古宙碎屑锆石的发现表明华北克拉通无疑存在4.0 Ga以上的形成演化历史。本文新定义的曹庄-喇叭山岩系形成于3.1~3.4 Ga之间,主要由变质碎屑沉积岩和变质基性-超基性岩组成,可能代表了地幔柱与大陆壳相互作用的构造环境。根据碎屑锆石形态特征和不同样品碎屑锆石年龄分布存在差异,物源区具有近源和规模大的特征,存在3.92~4.0 Ga、3.8 Ga、3.6~3.7 Ga和3.4~3.45 Ga等不同期次花岗质岩浆作用。  相似文献   

7.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

8.
Hydrothermal zircon can be used to date fluid-infiltration events and water/rock interaction. At the Boggy Plain zoned pluton (BPZP), eastern Australia, hydrothermal zircon occurs with hydrothermal scheelite, molybdenite, thorite and rutile in incipiently altered aplite and monzogranite. The hydrothermal zircon is texturally distinct from magmatic zircon in the same rocks, occurring as murky-brown translucent 20–50 μm-thick mantles on magmatic cores and less commonly as individual crystals. The hydrothermal mantles are internally textureless in back-scatter electron and cathodoluminescence images whereas magmatic zircon is oscillatory zoned. The age of the hydrothermal zircon is indistinguishable from magmatic zircon, indicating precipitation from a fluid evolved from the magma during the final stages of crystallization. Despite indistinguishable U-Pb isotopic compositions, the trace-element compositions of the hydrothermal and magmatic zircon are distinct. Hydrothermal zircon is enriched in all measured trace-elements relative to magmatic zircon in the same rock, including V, Ti, Nb, Hf, Sc, Mn, U, Y, Th and the rare-earth elements (REE). Chondrite-normalized REE abundances form two distinct pattern groupings: type-1 (magmatic) patterns increase steeply from La to Lu and have Ce and Eu anomalies—these are patterns typical for unaltered magmatic zircon in continental crust rock types; type-2 (hydrothermal) patterns generally have higher abundances of the REE, flatter light-REE patterns [(Sm/La)N = 1.5–4.4 vs. 22–110 for magmatic zircon] and smaller Ce anomalies (Ce/Ce* = 1.8–3.5 vs. 32–49 for magmatic zircon). Type-2 patterns have also been described for hydrothermally-altered zircon from the Gabel Hamradom granite, Egypt, and a granitic dyke from the Acasta Gneiss Complex, Canada.Hadean (∼4.5–4.0 Ga) zircon from the Jack Hills, Western Australia, have variable normalized REE patterns. In particular, the oldest piece of Earth—zircon crystal W74/2-36 (dated at 4.4 Ga)—contains both type-1 and type-2 patterns on a 50 μm scale, a phenomenon not yet reported for unaltered magmatic zircon. In the context of documented magmatic and hydrothermal zircon compositions from constrained samples from the BPZP and the literature, the type-2 patterns in crystal W74/2-36 and other Jack Hills Hadean (JHH) zircon are interpreted as hydrothermally-altered magmatic compositions. An alteration scenario, constrained by isotope and trace-element data, as well as α-decay event calculations, involving fluid/zircon cation and oxygen isotope exchange within partially metamict zones and minor dissolution/reprecipitation, may have occurred episodically for some JHH zircon and at ∼4.27 Ga for zircon W74/2-36. Type-2 compositions in JHH zircon are interpreted to represent localized exchange with a light-REE-bearing, high δ18O (∼6–10‰ or higher) fluid. Thus, a complex explanation involving “permanent” liquid water oceans, large-scale water/rock interaction and plate tectonics in the very early Archean is not necessary as the zircon textures and compositions are simply explained by exchange between partially metamict zircon and a low volume ephemeral fluid.  相似文献   

9.
Detrital zircon grains from Beit Bridge Group quartzite from the Central Zone of the Limpopo Belt near Musina yield mostly ages of 3.35-3.15 Ga, minor 3.15-2.51 Ga components, and numerous older grains grouped at approximately 3.4, 3.5 and 3.6 Ga. Two grains yielded concordant Late Hadean U-Pb ages of 3881 ± 11 Ma and 3909 ± 26 Ma, which are the oldest zircon grains so far found in Africa. The combined U-Pb and Lu-Hf datasets and field relationships provide evidence that the sedimentary protolith of the Beit Bridge Group quartzite was deposited after the emplacement of the Sand River Gneisses (3.35-3.15 Ga), but prior to the Neoarchean magmatic-metamorphic events at 2.65-2.60 Ga. The finding of abundant magmatic zircon detritus with concordant U-Pb ages of 3.35-3.15 Ga, and 176Hf/177Hf of 0.28066 ± 0.00004 indicate that the Sand River Gneiss-type rocks were a predominant source. In contrast, detrital zircon grains older than approximately 3.35 Ga were derived from the hinterland of the Limpopo Belt; either from a so far unknown crustal source in southern Africa, possibly from the Zimbabwe Craton and/or a source, which was similar but not necessarily identical to the one that supplied the Hadean zircons to Jack Hills, Western Australia. The Beit Bridge Group zircon population at >3.35 Ga shows a general εHft increase with decreasing age from εHf3.9Ga = −6.3 to εHf3.3-3.1Ga = −0.2, indicating that Hadean crust older than 4.0 Ga (TDM = 4.45-4.36 Ga) was rejuvenated during magmatic events between >3.9 and 3.1 Ga, due to a successive mixing of crustal rocks with mantle derived magmas. The existence of a depleted mantle reservoir in the Limpopo’s hinterland is reflected by the ∼3.6 Ga zircon population, which shows εHf3.6Ga between −4.6 and +3.2. In a global context, our data suggest that a long-lived, mafic Hadean protocrust with some tonalite-trondhjemite-granodiorite constituents was destroyed and partly recycled at the Hadean/Archean transition, perhaps due to the onset of modern-style plate tectonics.  相似文献   

10.
Discoveries of >4 Ga old zircon grains in the northwest Yilgarn of Western Australia led to the conclusion that evolved crust formed on the Earth within the first few 100 Ma after accretion. Little is known, however, about the fate of the first crust that shaped early Earth's surface. Here we report combined solution and laser-ablation Lu–Hf–U–Pb isotope analyses of early Archean and Hadean detrital zircon grains from different rocks of the Narryer Gneiss Complex (NGC), Yilgarn Craton, Western Australia. The zircons show two distinct groups with separate evolutionary trends in their Hf isotopes. The majority of the zircon grains point to separation from a depleted mantle reservoir at ∼3.8–3.9 Ga. The second Hf isotope trend implies reworking of older Hadean zircon grains. The major trend starting at 3.8–3.9 Ga defined by the Hf isotopes corresponds to a Lu/Hf that is characteristic for felsic crust and consequently, the primary sources for these zircons presumably had a chemical composition characteristic of continental crust. Reworked Hadean crust appears to have evolved with a similar low Lu/Hf, such that the early crust was probably evolved with respect to Lu–Hf distributions. The co-variation of Hf isotopes vs. age in zircon grains from Mt. Narryer and Jack Hills zircon grains implies a similar crustal source for both sediments in a single, major crustal domain. Age spectra and associated Hf isotopes in the zircon grains strongly argue for ongoing magmatic reworking over hundreds of millions of years of the felsic crustal domain in which the zircon grains formed. Late-stage metamorphic zircon grains from the Meeberrie Gneiss unit yield a mean U–Pb age of 3294.5 ± 3.2 Ma with initial Hf isotopes that correspond to the evolutionary trend defined by older NGC zircon grains and overlap with other detrital zircon grains, proving their genetic relationship. This ‘Meeberrie event’ is interpret here as the last reworking event in the precursor domain before final deposition. The continuous magmatic activity in one crustal domain during the Archean is recorded by the U–Pb ages and Hf isotope systematics of zircon grains and implies reworking of existing crust. We suspect that the most likely driving force for such reworking of crustal material is ongoing crustal collision and subduction. A comparison of Hf isotope signatures of zircon grains from other Archean terranes shows that similar trends are recognised within all sampled Archean domains. This implies either a global trend in crustal growth and reworking, or a genetic connection of Archean terranes in close paleo-proximity to each other. Notably, the Archean Acasta gneiss (Canada) shows a similar reworking patterns to the Yilgarn Craton of Hadean samples implying either a common Hadean source or amalgamation at the Hadean–Archean transition.  相似文献   

11.
中国最老岩石和锆石   总被引:18,自引:12,他引:6  
在中国大陆的许多地区都已发现大于3.4Ga的锆石和岩石.鞍山是全球仅有几个存在≥3.8Ga岩石的地区之一.它们以不大的规模存在于白家坟、东山、深沟寺杂岩中,由糜棱岩化奥长花岗岩、条带状奥长花岗岩和变质石英闪长岩组成.近年来,在鞍山地区还发现了许多3.7~3.6Ga岩石和锆石.锆石Hf同位素组成表明鞍山地区在3.8~3.6Ga期间存在周期性的地幔添加和陆壳形成.除鞍山外,在中国许多地区的不同类型岩石中也获得了≥3.4Ga锆石,虽然它们大多数都是碎屑和残余成因.(1)华北克拉通冀东铬云母石英岩中3.85~3.55Ga碎屑锆石:(2)华北克拉通信阳中生代火山岩长英质麻粒岩中3.66Ga岩浆锆石;(3)华南克拉通宜昌地区杨子地块新元古代砂岩中3.80Ga碎屑锆石(一颗);(4)华南克拉通华夏地块新元古代一古生代变质沉积岩中3.76~3.6Ga碎屑锆石;(5)西北地区塔里木地块阿克塔什塔格地区古元古代片麻状花岗岩中3.6Ga残余锆石;(6)西秦岭奥陶纪变质火山岩中4.08Ga捕掳锆石(一颗);(7)西藏普兰地区奥陶纪石英岩中4.1Ga碎屑锆石(一颗,有3.61Ga增生边).一些古老锆石有高达4.1~4.0Ga的Hf同位素模式年龄.在中国,>3.4Ga地壳物质的比例以往被低估了,发现冥古宙和始太古代物质的可能性仍然存在,它们将对中国早期陆壳演化提供新的制约.  相似文献   

12.
《China Geology》2018,1(1):109-136
The mainland of China is composed of the North China Craton, the South China Craton, the Tarim Craton and other young orogenic belts. Amongst the three cratons, the North China Craton has been studied most and noted for its widely-distributed Archean basement rocks. In this paper, we assess and compare the geology, rock types, formation age and geochemical composition features of the Archean basements of the three cratons. They have some common characteristics, including the fact that the crustal rocks prior to the Paleoarchean and the supracrustal rocks of the Neoarchean were preserved, and Tonalite-Trondhjemtite-Granodiorite (TTG) magmatism and tectono-magmatism occurred at about 2.7 Ga and about 2.5 Ga respectively. The Tarim Craton and the North China Craton show more similarities in their early Precambrian crustal evolution. Significant findings on the Archean basement of the North China Craton are concluded to be: (1) the tectonic regime in the early stage (>3.1 Ga) is distinct from modern plate tectonics; (2) the continental crust accretion occurred mostly from the late Mesoarchean to the early Neoarchean period; (3) a huge linear tectonic belt already existed in the late Neoarchean period, suggesting the beginning of plate tectonics; and (4) the preliminary cratonization had already been completed by about 2.5 Ga. Hadean detrital zircons were found at a total of nine locations within China. Most of them show clear oscillatory zoning, sharing similar textures with magmatic zircons from intermediate-felsic magmatic rocks. This indicates that a fair quantity of continental material had already developed on Earth at that time.  相似文献   

13.
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2014,30(10):2941-2950
古老陆壳物质的发现与鉴别是探索地球早期陆壳形成与演化历史的重要内容之一,锆石U-Pb年龄结合Hf同位素研究是该研究的重要手段。本文通过对胶北地体内一个长英质副片麻岩中的锆石开展系统的原位U-Pb定年和微量、稀土元素分析,获得了多个太古宙早期的锆石。根据这些锆石的阴极发光图像、Th/U比值及稀土元素球粒陨石标准化配分模式,它们具有典型岩浆锆石的特征,其中2个分析点给出了3413Ma和3400Ma(~3.4Ga)的锆石U-Pb年龄,7个分析点给出3547±19Ma(MSWD=1.16)的锆石U-Pb年龄,指示太古宙早期的陆壳岩浆事件;结合华北克拉通其它地区的类似研究结果,暗示华北克拉通可能曾经存在比现今出露面积更大的太古宙早期的古老陆壳。这些古老锆石的Hf同位素分析显示,它们的εHf(t)值在-6.19~0.95之间,平均为-2.54,两阶段Hf模式年龄在3737~4353Ma之间,平均值为~4.1Ga,远大于锆石的U-Pb年龄,指示华北克拉通存在~4.1Ga的地壳增生作用及古老陆壳(3.55Ga)的再循环。  相似文献   

14.
河西走廊晚泥盆世地层中冥古宙碎屑锆石的发现   总被引:3,自引:2,他引:1  
袁伟  杨振宇  杨进辉 《岩石学报》2012,28(4):1029-1036
河西走廊地区晚泥盆统中宁组地层中,利用LA-ICP-MS法测年获得了3.9Ga和4.0Ga两颗碎屑锆石,其Th/U依次为1.01和0.58,均为岩浆锆石。两颗锆石稀土元素呈轻稀土(LREE)亏损、重稀土(HREE)富集,均具有Ce正异常,其中4.0Ga锆石具有Eu负异常,3.9Ga锆石无Eu负异常。利用锆石中49Ti的含量计算原岩岩浆温度分别为792±36℃(3.9Ga)和967±45℃(4.0Ga)。3.9Ga锆石获得原位Hf同位素结果,176Hf/177Hfi=0.280169,εHf(t)=-3.6,tDM=4139Ma, tDMC=4319Ma。这两颗>3.9Ga碎屑锆石为西北地区首次发现,其微量元素特征说明在冥古宙时地球上可能存在地壳;结合前人古生物和古地磁研究结果,说明河西走廊在晚泥盆世时同澳大利亚西北部可能具有亲缘性。  相似文献   

15.
The dominant geodynamic processes that underpin the formation and evolution of Earth’s early crust remain enigmatic calling for new information from less studied ancient cratonic nuclei.Here,we present U-Pb ages and Hf isotopic compositions of detrital zircon grains from^2.9 Ga old quartzites and magmatic zircon from a 3.505 Ga old dacite from the Iron Ore Group of the Singhbhum craton,eastern India.The detrital zircon grains range in age between 3.95 Ga and 2.91 Ga.Together with the recently reported Hadean,Eoarchean xenocrystic(up to 4.24 Ga)and modem detritus zircon grains from the Singhbhum craton,our results suggest that the Eoarchean detrital zircons represent crust generated by recycling of Hadean felsic crust formed at^4.3-4.2 Ga and^3.95 Ga.We observe a prominent shift in Hf isotope compositions at^3.6-3.5 Ga towards super-chondritic values,which signify an increased role for depleted mantle and the relevance of plate tectonics.The Paleo-,Mesoarchean zircon Hf isotopic record in the craton indicates crust generation involving the role of both depleted and enriched mantle sources.We infer a short-lived suprasubduction setting around^3.6-3.5 Ga followed by mantle plume activity during the Paleo-,Mesoarchean crust formation in the Singhbhum craton.The Singhbhum craton provides an additional repository for Earth’s oldest materials.  相似文献   

16.
华北克拉通胶东地区粉子山群碎屑锆石SHRIMPU-Pb定年   总被引:18,自引:16,他引:2  
胶东是华北克拉通重要的变质基底出露区之一。对该区古元古代粉子山群和荆山群中碎屑锆石的年龄分布特征的研究,可以为胶东地区早前寒武纪演化提供重要依据。由于Pb丢失作用,前人仅在粉子山群中获得少量锆石谐和年龄。本文对粉子山群长石石英片岩中碎屑锆石进行了SHRIMP定年。52颗锆石的61个数据点分析,获得36个谐和年龄(不谐和度10%)。所有具谐和年龄的锆石都具有高的Th/U比值,大多显示明显的岩浆环带,原为岩浆成因。谐和锆石年龄分布在2033~3429Ma之间,主要峰值分别为~2.19Ga和~2.48Ga。该样品中还含有2颗年龄大于3.3Ga的锆石,位于谐和线上的2颗最年轻碎屑锆石的年龄为~2.08Ga。结合前人研究,可得出如下结论:1)粉子山群和荆山群原岩沉积时代可进一步限制在1.9~2.1Ga之间;2)粉子山群与荆山群的碎屑锆石年龄分布形式存在明显区别,指示其源区可能不同;3)胶东地区可能存在古太古代地壳物质。  相似文献   

17.
北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展   总被引:15,自引:13,他引:2  
2007年王洪亮等报道在北秦岭西段火山岩中获得一粒年龄为4079±5Ma的冥古宙捕虏锆石。之后,对这一发现开展了深入的调查研究,我们除利用SHIMP技术方法对原4079Ma的锆石进行验证外,新获得了两粒~(207)Pb/~(206)Pb年龄为4007±29Ma和3908±45Ma捕获的变质成因锆石,表明早在4.0Ga已经有变质作用的发生,这或许说明在冥古宙时期地球已经具有相当规模和厚度的地壳。同时开展的岩石学研究表明,蕴含古老锆石的母岩属于火山碎屑熔岩类而不是火山熔岩。  相似文献   

18.
Detrital zircons from the Ob, Yenisey, Lena, Amur, Volga, Dnieper, Don and Pechora rivers have been analyzed for U-Th-Pb, O and Lu-Hf isotopes to constrain the growth rate of the preserved continental crust in Greater Russia. Four major periods of zircon crystallization, 0.1-0.55, 0.95-1.3, 1.45-2.0 and 2.5-2.9 Ga, were resolved from a compilation of 1366 zircon U/Pb ages. The Archean zircons have δ18O values lying between 4.53‰ and 7.33‰, whereas Proterozoic and Phanerozoic zircons have a larger range of δ18O values in each of the recognized U/Pb time intervals with maximum δ18O values up to 12‰. We interpret the zircons with δ18O between 4.5‰ and 6.5‰ to have been derived from a magmatic precursor that contains little or no sedimentary component. The variable δ18O values of the zircons were used to constrain the 176Lu/177Hf ratios of the crustal source region of the zircons, which, in turn, were used to calculate Hf model ages (TDMV). The crustal incubation time, the time difference between primitive crust formation (dated by TDMV) and crustal melting (dated by zircon U/Pb age), varies between 300 to 1000 Myr for the majority of analyzed zircon grains, but can be up to 2500 Myr. The average TDMV Hf model age weighted by the fraction of zircons in the river load is 2.12 Ga, which is in reasonable agreement with the area-weighted average of 2.25 Ga. The TDMV Hf model age crustal growth curve for zircons with mantle-like δ18O values (4.5-6.5‰), weighted by area, shows that growth of the Great Russian continental crust started at 4.2 Ga, and that there are two principal periods of crustal growth, 3.6-3.3 Ga and 0.8-0.6 Ga, which are separated by an interval of low but more or less continuous growth. An alternative interpretation, in which the average 176Lu/177Hf ratio (0.0115) of the continental crust is used for the Paleoproterozoic zircons from the Lena River, lowers the average TDMV age of these grains by about 500 Myr and delays the onset of significant crustal growth to 3.5 Ga.The two principal growth periods recognized in Greater Russia differ from those identified from the Gondwana and the Mississippi river basin, which show peaks at 1.7-1.9 and 2.9-3.1 Ga (Hawkesworth and Kemp, 2006a) and 1.6-2.2 and 2.9-3.4 Ga (Wang et al., 2009), respectively. The older 3.6-3.3 Ga or 3.5-3.3 Ga peak for Greater Russia is slightly older than the older Gondwana-Mississippi peaks, whereas the younger 0.8-0.6 Ga peak is distinctly younger than the youngest peak in either Gondwana or the Mississippi river basin. This suggests that the two major peaks of crustal growth identified in Gondwana and the Mississippi river basin may not be global periods of enhanced continental growth and that the major periods of crustal growth may differ from continent to continent.  相似文献   

19.
《Comptes Rendus Geoscience》2007,339(14-15):928-936
Recent geochemical evidence based on the 146Sm–142Nd system and Hadean zircons shows that the Earth's mantle experienced depletion approximately 100 Ma after the formation of the solar system, and possibly even before (earlier than 30 Ma), due to the extraction of a crust enriched in incompatible elements. Depending on the model 142Nd abundance assumed for the Bulk Earth, the early crust may have been stored in the deep mantle, or may have been remixed in the mantle with a timescale of ∼1 Ga. If the Earth is considered to have a 142Nd composition identical to that of ordinary chondrites, then it implies that the early crust (or the enriched reservoir) is now present at the core–mantle boundary and has remained isolated from the rest of the Earth for the past 4.5 Ga. If the primordial crust had a basaltic composition, then it is unlikely that this enriched reservoir remained isolated for more than 4.5 Ga due to entrainment; yet, there is no signature of this reservoir in hotspot lavas that should sample this enriched reservoir. In contrast, if the Bulk Earth has an Nd isotopic composition slightly distinct from that of chondrites, then there is no need to invoke a hidden reservoir and the early crust must have been remixed by mantle convection prior to the formation of the modern continents.  相似文献   

20.
The early tectonic evolution of the Lhasa Terrane remains poorly understood, although evidence for a substantial prehistory has been reported recently. We have carried out in situ zircon U–Pb dating and Hf–O isotopes of late Early Cretaceous monzogranites and get a surprising package of inherited zircons, not only because of their age profile, but also because the oldest Palaeoarchaean zircons are euhedral. The discovery of Palaeoarchaean euhedral zircons in the region suggests the presence of extremely old rocks in Tibet. Zircons from the Nagqu monzogranite yield five age peaks at ~3.45 Ga, ~2.56 Ga, ~1.76 Ga, ~900 Ma, and ~111 Ma. They have large variations in εHf(t) values (?45.1–9.2) and old Hf model ages (924–3935 Ma), with variable δ18O values of ?5.80–9.64. Palaeoarchaean zircons (~3.20–3.45 Ga) are euhedral with magmatic zircon characteristics. One of the grains has negative εHf(t) value (?4.8), old Hf model age (3935 Ma), and high positive δ18O value (7.27), which suggests an ancient crustal origin. The source of Palaeoarchaean euhedral zircons should be proximal to prevent long-distance transport and abrasion, whereas the late Early Cretaceous monzogranites are I-type. Thus, Palaeoarchaean euhedral zircons are most likely captured from the country rocks by assimilation at depth or may be relics of previous magmatic zircons. Notwithstanding their exact history, Palaeoarchaean euhedral zircons indicate Palaeoarchaean materials near Nagqu in the Tibetan Plateau. The inherited zircons also experienced a Late Palaeoproterozoic event (~1.76 Ga) likely related to the evolution of the India block. The peak at ~900 Ma suggests affinity to the Qiangtang and Himalaya blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号